分析 (1)在矩形ABCD中求出对角线AC的长度,然后表示出CQ、PC的长度,过点P作PH⊥BC于点H,然后在Rt△PHC中表示出PH的长度,根据面积为3.6cm2,列方程求解.
(2)分∠PQC=90°与∠CPQ=90°两种情况进行讨论即可.
解答 解:(1)在矩形ABCD中,
∵AB=6cm,BC=8cm,
∴AC=10cm,AP=2tcm,PC=(10-2t)cm,
CQ=tcm,
过点P作PH⊥BC于点H,
则PH=$\frac{3}{5}$(10-2t)cm,
根据题意,得 $\frac{1}{2}$t•$\frac{3}{5}$(10-2t)=3.6,![]()
解得:t1=2,t2=3.
答:△CQP的面积等于3.6cm2时,t的值为2或3.
(2)如答图1,当∠PQC=90°时,PQ⊥BC,
∵AB⊥BC,AB=6,BC=8,QC=t,PC=10-2t,
∴△PQC∽△ABC,![]()
∴$\frac{PC}{AC}$=$\frac{CQ}{BC}$,即$\frac{10-2t}{10}$=$\frac{t}{8}$,解得t=$\frac{40}{13}$(秒);
如答图2,当∠CPQ=90°时,PQ⊥AC,
∵∠ACB=∠QCP,∠B=∠QPC,
∴△CPQ∽△CBA,
∴$\frac{CP}{BC}$=$\frac{CQ}{AC}$,即$\frac{10-2t}{8}$=$\frac{t}{10}$,解得t=$\frac{25}{7}$(秒).
综上所述,t为$\frac{40}{13}$秒与$\frac{25}{7}$秒时,△CPQ与△CAB相似.
点评 本题考查的是相似三角形的判定与性质,解题关键是对这些知识的熟练掌握及灵活运用,在解答(2)时要注意分类讨论.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com