精英家教网 > 初中数学 > 题目详情
(2012•珠海)观察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,

以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:
①52×
275
275
=
572
572
×25;
63
63
×396=693×
36
36

(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.
分析:(1)观察规律,左边,两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;右边,三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;
(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行证明即可.
解答:解:(1)①∵5+2=7,
∴左边的三位数是275,右边的三位数是572,
∴52×275=572×25,
②∵左边的三位数是396,
∴左边的两位数是63,右边的两位数是36,
63×369=693×36;
故答案为:①275,572;②63,36.

(2)∵左边两位数的十位数字为a,个位数字为b,
∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,
右边的两位数是10b+a,三位数是100a+10(a+b)+b,
∴一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),
证明:左边=(10a+b)×[100b+10(a+b)+a],
=(10a+b)(100b+10a+10b+a),
=(10a+b)(110b+11a),
=11(10a+b)(10b+a),
右边=[100a+10(a+b)+b]×(10b+a),
=(100a+10a+10b+b)(10b+a),
=(110a+11b)(10b+a),
=11(10a+b)(10b+a),
左边=右边,
所以“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).
点评:本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.
(a+b)=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
则(a+b)6=a6+6a5b+15a4b2+
20
a3b3+15a2b4+6ab5+b6

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•珠海)已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.
(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);
(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;
(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•益阳)观察图形,解答问题:

(1)按下表已填写的形式填写表中的空格:
图① 图② 图③
三个角上三个数的积 1×(-1)×2=-2 (-3)×(-4)×(-5)=-60
三个角上三个数的和 1+(-1)+2=2 (-3)+(-4)+(-5)=-12
积与和的商 -2÷2=-1,
(2)请用你发现的规律求出图④中的数y和图⑤中的数x.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解题:
网格纸上画着纵、横两组平行线,相邻平行线之间的距离都相等,这两组平行线的交点称为格点,由多条线段首位顺次相接而组成的图形叫多边形,如果一个多边形的顶点都在格点上,那么这种多边形叫格点多边形,有趣的是:这种多边形的面积可根据图形内部及它的边上的格点数目来计算,算法十分简捷.
设格点多边形的面积为S,多边形内部的格点数为N,它边上的格点数为L,下面我们来探究S与N、L三者之间的数量关系,问题研究应从简单的图形入手.

(1)当N=0时的格点多边形,根据图1观察下表,填空:
图形序号    S    N    L
   ①    1    0    4
   ②    2    0    6
   ③    3    0    8
观察图1①、②、③可以发现S与L之间的数量关系式是:
S=
1
2
L-1
S=
1
2
L-1


(2)根据图2,填写下表:
图形序号    S    N    L  
1
2
  L
   ①    2.5       5    2.5
   ②       2    6    3
   ③    4    3     
请你在图2④的位置上再画一个N=2的格点多边形(不同于图2②);
(3)综上分析与归纳,格点多边形的面积S与多边形内部的格点数N,它边上的格点数L之间的数量关系式是:
S=
1
2
L+N-1
S=
1
2
L+N-1

查看答案和解析>>

同步练习册答案