精英家教网 > 初中数学 > 题目详情

如图,在长方形ABCD中,O为对角线AC的中点,P是AB上任意一点,Q是OC上任意一点,已知:AC=2,BC=1.
(1)求折线OPQB的长的最小值;
(2)当折线OPQB的长最小时,试确定Q的位置.

解:(1)作点B关于AC的对称点B′,作点O关于AB的对称点O′,
连接AB′,QB′,AO′,PO′,B′O′,则QB=QB′,OP=O′P,
折线OPQB的长=OP+PQ+QB=O′P+PQ+QB′,
∴折线OPQB的长的最小值=B′O′.
∵在长方形ABCD中,∠ABC=90°,
在△ABC中,AC=2,BC=1,∠ABC=90°,
∴∠BAC=30°,
∵点B、B′关于AC对称,点O、O′关于AB对称,
∴∠B′AC=30°,AB′=AB=,∠O′AB=30°,AO′=AO=1,
∴∠B′AO′=90°,
∴B′O′=
∴折线OPQB的长的最小值=2;

(2)设B′O′交AC于点Q′,
∵在Rt△AO′B′中,AO′=1,B′O′=2,
∴∠AB′O′=30°,则∠AO′B′=60°,
∵在△AO′Q′中,∠Q′AO′=∠Q′AB+∠BAO′=60°,
∴△AO′Q′是等边三角形,
∴AQ′=AO′=1=AO,
∴点Q′就是AC的中点O.
∴当折线OPQB的长最小时,点Q在AC的中点.
分析:(1)先作点B关于AC的对称点B′,作点O关于AB的对称点O′,连接AB′,QB′,AO′,PO′,B′O′,则QB=QB′,OP=O′P,有两点之间线段最短可知折线OPQB的长的最小值=B′O,再由轴对称的性质及勾股定理即可求出B′O的长,即折线OPQB的长的最小值;
(2)设B′O′交AC于点Q′,再由正方形的性质及三角形内角和定理判断出△AO′Q′是等边三角形,由等边三角形三线合一的性质即可解答.
点评:本题考查的是最短线路问题及正方形的性质,解答此类题目的关键是综合运用正方形及等边三角形的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在长方形ABCD(对边相等,四角都是直角)中,将△ABC沿AC对折至△AEC位置,CE与AD交精英家教网于点F.
(1)求证:△AFC是等腰三角形;
(2)若∠ACB=30°,BC=12cm,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上.
(1)若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C有
7
7
个.
(2)选取其中一个C点连△ABC,作出△ABC关于直线L对称的图形.

查看答案和解析>>

科目:初中数学 来源:2015届江苏省苏州市八年级上学期期中模拟数学试卷(解析版) 题型:解答题

(8分)如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.

(1)试说明:AF=FC;

(2)如果AB=3,BC=4,求AF的长.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北师大版九年级(上)期末数学复习水平测试卷(解析版) 题型:解答题

如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

同步练习册答案