【题目】已知:如图,AB=BC,∠ABC=90°,以AB为直径的⊙O交OC与点D,AD的延长线交BC于点E,过D作⊙O的切线交BC于点F.下列结论:①CD2=CE·CB;②4EF 2=ED ·EA;③∠OCB=∠EAB;④.其中正确的只有____________________.(填序号)
【答案】①、②、④
【解析】试题分析:先连接BD,利用相似三角形的判定以及切线的性质定理得出DF=FB,进而分别得出△CDE∽△CBD以及△CDF∽△CBO,再根据相似三角形的性质分别分析即可得出答案.
①连接BD,∵AB为直径,∴∠ADB=90°,∴∠DBE+∠3=90°,∵∠ABC=90°,
∴∠1+∠DBE=90°,∴∠1=∠3,又∵DO=BO,∴∠1=∠2,∴∠2=∠3,
∴∠CDB=∠CED,∵∠DCB=∠ECD,∴△CDE∽△CBD,∴,故①正确;
②∵过D作⊙O的切线交BC于点F,∴FD是⊙O的切线,∵∠ABC=90°,
∴CB是⊙O的切线,∴FB=DF,∴∠FDB=∠FBD,∴∠1=∠FDE,∴∠FDE=∠3,
∴DF=EF,∴EF=FB,∴EB=2EF,∵在Rt△ABE中,BD⊥AE,∴,
∴,故②正确;
③∵AO=DO,∴∠OAD=∠ADO,假设③∠OCB=∠EAB成立,则∠OCB=0.5∠COB,
∴∠OCB=30°,而 ,与tan30°= 矛盾,
故③∠OCB=∠EAB不成立,故此选项错误;
④∵∠CDF=∠CBO=90°,∠DCF=∠OCB,∴△CDF∽△CBO,∴ ,∴ ,
∵AB=BC,∴DF=0.5CD;故④正确.
科目:初中数学 来源: 题型:
【题目】图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点.现测得AB=BE=ED=CD=15cm,经多次调试发现当点B,E所在直线垂直经过CD的中点F时(如图3所示)放置较平稳.
(1)求平稳放置时灯座DC与灯杆DE的夹角的大小;
(2)为保护视力,写字时眼睛离桌面的距离应保持在30cm,为防止台灯刺眼,点A离桌面的距离应不超过30cm,求台灯平稳放置时∠ABE的最大值.(结果精确到0.01°,参考数据: ≈1.732,sin7.70°≈0.134,cos82.30°≈0.134,可使用科学计算器)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为( )
A.0.215×104
B.2.15×103
C.2.15×104
D.21.5×102
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )
A.5千米
B.7千米
C.8千米
D.15千米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com