分析 设正方形HEFG的边长为a,由∠A=90°,方形EFGH的四个顶点在三角形的边上,通过等角的余角相等可得∠BHE=∠C,于是Rt△BEH∽Rt△GFC,则a:6=2:a,即可得到方形EFGH的边长.
解答 解:设正方形HEFG的边长为a,
∵∠A=90°,正方形EFGH的四个顶点在三角形的边上,
∴∠B+∠C=90°,
而∠B+∠BHE=90°,
∴Rt△BEH∽Rt△GFC,
∴a:6=2:a,
∴a2=12,
∴a=2$\sqrt{3}$;
故答案为:2$\sqrt{3}$.
点评 本题考查了相似三角形的判定与性质、正方形的性质;熟练掌握正方形的性质,证明三角形相似是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{7}{10}$ | B. | $\frac{7}{3}$ | C. | $\frac{3}{10}$ | D. | $\frac{3}{7}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com