分析 (1)过C作CM⊥y轴于M,通过判定△BCM≌△ABO(AAS),得出CM=BO=1,BM=AO=4,进而得到OM=3,据此可得C(-1,-3);
(2)过C作CM⊥y轴于M,根据△BCM≌△ABO,可得CM=BO,BM=OA=4,再判定△DBE≌△CME(AAS),可得BE=EM,进而得到BE=$\frac{1}{2}$BM=2.
解答
解:(1)如图1,过C作CM⊥y轴于M.
∵CM⊥y轴,
∴∠BMC=∠AOB=90°,
∴∠ABO+∠BAO=90°
∵∠ABC=90°,
∴∠CBM+∠ABO=90°,
∴∠CBM=∠BAO,
在△BCM与△ABO中,
$\left\{\begin{array}{l}{∠BMC=∠AOB}\\{∠CBM=∠BAO}\\{BC=AB}\end{array}\right.$,
∴△BCM≌△ABO(AAS),
∴CM=BO=1,BM=AO=4,
∴OM=3,
∴C(-1,-3);
(2)在B点运动过程中,BE长保持不变,BE的长为2,
理由:如图2,过C作CM⊥y轴于M,![]()
由(1)可知:△BCM≌△ABO,
∴CM=BO,BM=OA=4.
∵△BDO是等腰直角三角形,
∴BO=BD,∠DBO=90°,
∴CM=BD,∠DBE=∠CME=90°,
在△DBE与△CME中,
$\left\{\begin{array}{l}{∠DBE=∠CME}\\{∠DEB=∠CEM}\\{BD=MC}\end{array}\right.$,
∴△DBE≌△CME(AAS),
∴BE=EM,
∴BE=$\frac{1}{2}$BM=2.
点评 本题考查了全等三角形的判定以及全等三角形对应边、对应角相等的性质,熟练掌握三角形全等的判定方法,判定△DBE≌△CME是解第(2)题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a-1÷a3=a2 | B. | ($\frac{1}{3}$)0=0 | C. | 3-2=$\frac{1}{9}$ | D. | (a2)3=a5 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com