精英家教网 > 初中数学 > 题目详情
如图,在长方形ABCD中,AD=13cm,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,求△AED的面积.
分析:由在长方形ABCD中,AD=13cm,DC=5cm,可得∠B=∠C=90°,AB=CD=5cm,BC=AD=13cm,由折叠的对称性,得AD=AF=13cm,DE=DF,又由勾股定理,即可得BF的值,然后设DE=xcm,由勾股定理,即可得方程(5-x)2+12=x2,解此方程即可求得答案.
解答:解:∵四边形ABCD是矩形,
∴∠B=∠C=90°,AB=CD=5cm,BC=AD=13cm,
由折叠的对称性,得AD=AF=13cm,DE=DF,
在Rt△ABF中,由勾股定理,得BF=
AF2-AB2
=12cm,
设DE=xcm,则EC=5-x(cm),EF=xcm,FC=BC-BF=13-12=1(cm).
在Rt△ECF中,EC2+FC2=EF2
即(5-x)2+12=x2
解得:x=
13
5

∴DE=
13
5
cm,
∴S△ADE=
1
2
AD•DE=
1
2
×13×
13
5
=16.9(cm2).
点评:此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在长方形ABCD(对边相等,四角都是直角)中,将△ABC沿AC对折至△AEC位置,CE与AD交精英家教网于点F.
(1)求证:△AFC是等腰三角形;
(2)若∠ACB=30°,BC=12cm,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上.
(1)若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C有
7
7
个.
(2)选取其中一个C点连△ABC,作出△ABC关于直线L对称的图形.

查看答案和解析>>

科目:初中数学 来源:2015届江苏省苏州市八年级上学期期中模拟数学试卷(解析版) 题型:解答题

(8分)如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.

(1)试说明:AF=FC;

(2)如果AB=3,BC=4,求AF的长.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北师大版九年级(上)期末数学复习水平测试卷(解析版) 题型:解答题

如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

同步练习册答案