精英家教网 > 初中数学 > 题目详情
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连结DE,DE=
(1)求证:
(2)求EM的长;
(3)求sin∠EOB的值.
(1)证明:连接AC、EB
∵∠A=∠BEC,∠B=∠ACE
∴△AMC∽△EMB

--------------------------------------------------------3分
(2)解:∵DC是⊙O的直径
∴∠DEC=90°

∵DE=,CD=8,且EC为正数
∴EC=7
∵M为OB的中点
∴BM=2,AM=6
,且EM>MC
∴EM=4------------------------------------------------------------------------------7分
(3)解:过点E作EF⊥AB,垂足为点F
∵OE=4,EM=4
∴OE=EM
∴OF=FM=1
∴EF=
∴sin∠EOB=---------------------------------------------------------------------10分
(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;
(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,已知∠ABC=90°,BC=8,以AB为直径作⊙O,连结OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=,求直径AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,交OC于点E,连结CD,OD.给出以下四个结论:①S△DEC=S△AEO;②AC∥OD;③线段OD是DE与DA的比例中项;④.其中结论正确的是
A. ①②③        B. ①②④        C. ②③       D. ②④ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PAB和PCD是⊙O的两条割线,弧AC度数为,弧BD度数为,则∠P=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1与⊙O2相切 (包括内切与外切 ) ,⊙O1的半径为3 cm ,⊙O2的半径为2 cm,则O1O2的长是(    )
A.1 cmB.5 cmC.1 cm或5 cmD.0.5cm或2.5cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,为⊙的直径,于点

(1)求证:
(2)求的长;
(3)延长,使得,连接,试判断直 线与⊙的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知,圆锥的轴截面是边长为4的等边三角形,则此圆锥的侧面积为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,是⊙O的直径,点的延长线上,切⊙O于等于(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案