精英家教网 > 初中数学 > 题目详情
20.如图,正方形卡片A类,B类和长方形卡片C类若干张,若要用A、B、C三类卡片拼一个长为(a+3b),宽为(a+b)的长方形,则需要C类卡片(  )
A.2张B.3张C.4张D.5张

分析 根据长方形的面积=长×宽,求出长为a+3b,宽为a+b的长方形的面积是多少,判断出需要C类卡片多少张即可.

解答 解:长为a+3b,宽为a+b的长方形的面积为:
(a+3b)(a+b)=a2+4ab+3b2
∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,
∴需要A类卡片1张,B类卡片3张,C类卡片4张.
故选:C.

点评 此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.解方程:x2-8x-9=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,⊙O是△ABC的外接圆,点E在弧BC上,连接AE、BE.在线段AE上取一点D,连接BD.∠BDE=90°-$\frac{1}{2}$∠ACB
(1)求证:BE=DE;
(2)如图2,若BD平分∠ABC时,求证:AE平分∠BAC;
(3)如图3,在(2)的条件下,连接CD,当圆心O在线段BD上,$\frac{OD}{BO}$=$\frac{1}{3}$时,求$\frac{DC}{BE}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,用大小相等的小正方形拼成大正方形网格.在1×1的网格中,有1个正方形;在2×2的网格中,有5个正方形;在3×3的网格中,有14个正方形;…,依此规律,在4×4的网格中,有30个正方形,在n×n的网格中,有12+22+32+42+…+n2个正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,当y<0时,自变量x的范围是(  )
A.x<-2B.x>-2C.x>2D.x<2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.
例如,由1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.
(2)利用(1)中所得到的结论,解决下面的问题:
已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.若两个二次函数的图象关于原点O中心对称,则称这个二次函数为“关于原点中心对称二次函数”.
(1)请直接写出二次函数y=2(x-1)2+3“关于原点中心对称二次函数”y′的函数表达式;
(2)当(1)中的二次函数y,y′的函数值同时随x的增大而减小时,求x的取值范围;
(3)若关于x的两个二次函数y1=axx2+b1x+c1和y2=a2x2+b2x+c2为“关于原点中心对称二次函数”,已知a1=1,函数y3=y1+y2的图象与函数y4=$\frac{1}{2}$(y1-y2)的图象交于点(1,2),试比较y3,y4的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是3或-5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在每个小正方形的边长为I的网格中,点A,B,C,D均在格点上,点E在线段BC上,F是线段DB的中点,且BE=DF,则AF的长等于2.5,AE的长等于$\frac{\sqrt{61}}{2}$.

查看答案和解析>>

同步练习册答案