精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,CDAB,垂足为D,如果CD=12,AD=16,BD=9,那么△ABC是直角三角形吗?请说明理由.

【答案】ABC是直角三角形.

【解析】试题分析Rt△ACD中利用勾股定理可求AC2同理在Rt△ABD中利用勾股定理可求BC2AB=AD+BD易求AC2+BC2=AB2从而可知ABC是直角三角形.

试题解析理由如下

CDABCD=12,AD=16,BD=9,∴AC2=CD2+AD2=400.CDABAD=16,BD=9,∴BC2=CD2+BD2=225.∵AB=AD+BD=25,∴AB2=625,∴AC2+BC2=625=AB2,∴△ABC是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是(  )

A. 7x+9≤8+9(x﹣1) B. 7x+9≥9(x﹣1)

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是(  )

A. y= B. y= C. y= D. y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.

(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;

(2)若AB∥CD,试证明四边形ABCD是菱形;

(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为(

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年某企业按餐厨垃圾处理费25/ 吨、建筑垃圾处理费16/ 吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2018年元月起,收费标准上调为:餐厨垃圾处理费100/ 吨,建筑垃圾处理费30/ 吨.若该企业2018年处理的这两种垃圾数量与2017年相比没有变化,就要多支付垃圾处理费8800元.

(1)该企业2017年处理的餐厨垃圾和建筑垃圾各多少吨?

(2)该企业计划2018年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2018年该企业最少需要支付餐厨垃圾处理费多少元?

查看答案和解析>>

同步练习册答案