精英家教网 > 初中数学 > 题目详情

在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是


  1. A.
    1
  2. B.
    1或数学公式
  3. C.
    1或数学公式
  4. D.
    数学公式数学公式
D
分析:如图,延长AC,做PD⊥BC交点为D,PE⊥AC,交点为E,可得四边形CDPE是正方形,则CD=DP=PE=EC;等腰Rt△ABC中,∠C=90°,AC=1,所以,可求出AC=1,AB=,又AB=AP;所以,在直角△AEP中,可运用勾股定理求得DP的长即为点P到BC的距离.
解答:①如图,延长AC,做PD⊥BC交点为D,PE⊥AC,交点为E,
∵CP∥AB,
∴∠PCD=∠CBA=45°,
∴四边形CDPE是正方形,
则CD=DP=PE=EC,
∵在等腰直角△ABC中,AC=BC=1,AB=AP,
∴AB==
∴AP=
∴在直角△AEP中,(1+EC)2+EP2=AP2
∴(1+DP)2+DP2=(2
解得,DP=
②如图,延长BC,作PD⊥BC,交点为D,延长CA,作PE⊥CA于点E,
同理可证,四边形CDPE是正方形,
∴CD=DP=PE=EC,
同理可得,在直角△AEP中,(EC-1)2+EP2=AP2
∴(PD-1)2+PD2=(2
解得,PD=
故选D.
点评:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答;考查了学生的空间想象能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图所示,在等腰△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,图中有几对全等三角形(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区二模)如图,在等腰△ABC中,底边BC的中点是点D,底角的正切值是
1
3
,将该等腰三角形绕其腰AC上的中点M旋转,使旋转后的点D与A重合,得到△A′B′C′,如果旋转后的底边B′C′与BC交于点N,那么∠ANB的正切值等于
3
4
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

在等腰△ABC中,AB=AC,∠A=80°,则一腰上的高CD与底边BC的夹角为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=10cm,直线DE垂直平分AB,分别交AB、AC于D、E两点.若BC=8cm,则△BCE的周长是
18
18
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,
(1)试说明DE=DF;
(2)求EF长.

查看答案和解析>>

同步练习册答案