精英家教网 > 初中数学 > 题目详情

关于x的一元二次方程x2-x+p-1=0有两个实数根x1、x2
(1)求p的取值范围;
(2)若数学公式,求p的值.

解:(1)∵方程x2-x+p-1=0有两个实数根x1、x2
∴△≥0,即12-4×1×(p-1)≥0,解得p≤
∴p的取值范围为p≤
(2)∵方程x2-x+p-1=0有两个实数根x1、x2
∴x12-x1+p-1=0,x22-x2+p-1=0,
∴x12-x1=-p+1=0,x22-x2=-p+1,
∴(-p+1-2)(-p+1-2)=9,
∴(p+1)2=9,
∴p1=2,p2=-4,
∵p≤
∴p=-4.
分析:(1)根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到△≥0,即12-4×1×(p-1)≥0,解不等式即可得到p的取值范围;
(2)根据一元二次方程ax2+bx+c=0(a≠0)的解的定义得到x12-x1+p-1=0,x22-x2+p-1=0,则有x12-x1=-p+1=0,x22-x2=-p+1,然后把它们整体代入所给等式中得到(-p+1-2)(-p+1-2)=9,解方程求出p,然后满足(1)中的取值范围的p值即为所求.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•北仑区二模)若关于x的一元二次方程a(x+m)2=3两个实根为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点橫坐标分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是关于x的一元二次方程,则m=
65
2
65
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沈阳)若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是
a<4
a<4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州一模)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:
已知x1,x2是一员二次方程(m-3)x2+2mx+m=0的两个实数根.
(1)是否存在实数m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,请你说明理由;
(2)若|x1-x2|=
3
,求m的值和此时方程的两根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是(  )

查看答案和解析>>

同步练习册答案