精英家教网 > 初中数学 > 题目详情

【题目】已知一个Rt△的两边长分别为34,则第三边长的平方是(  )

A. 25 B. 14 C. 7 D. 725

【答案】D

【解析】

试题已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.

分两种情况:(134都为直角边,由勾股定理得第三边长的平方是25

23为直角边,4为斜边,由勾股定理得第三边长的平方是7

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】

如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数的图象与BC边交于点E.

FAB的中点时,求该函数的解析式;

k为何值时,△EFA的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为_________.(π取3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知xa=2,xb=3,则x3a+2b=(
A.17
B.72
C.24
D.36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.

(1)求抛物线的解析式;

(2)证明:△DBO∽△EBC;

(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )
A.顶点在圆上的角是圆周角
B.两边都和圆相交的角是圆周角
C.圆心角是圆周角的2倍
D.圆周角度数等于它所对圆心角度数的一半

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个多边形内角和是1080°,则这个多边形是( )
A.五边形
B.六边形
C.七边形
D.八边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCDAB=9,AD=4. ECD边上一点,CE=6.

(1)求AE的长.

(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE. 设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察与归纳:在如图1所示的平面直角坐标系中,直线l与y轴平行,点M与点N 是直线l上的两点(点M在点N的上方).

①亮亮发现:若点M坐标为(2,3),点N坐标为(2,﹣4),则MN的长度为_____②亮亮经过多次取l上的两点后,他归纳出这样的结论:若点M坐标为(t,m),点N坐标为(t,n),当m>n时,MN的长度可表示为______

(2)如图2,四边形OABC的顶点O是坐标原点,点A在第一象限,OAB=90,OA=AB,点C在第四象限,B点的坐标为(6,0),且OC=5.点P是线段OB上的一个动点(点P不与点0、B重合),过点P作与y轴平行的直线l,设点P横坐标为t.

①已知当t=4时,直线l恰好经过点C,求点A、C两点的坐标;

②在①的条件下,直线l上有一点M,当MB=OC时,直接写出满足条件的点M坐标;

③如图3延长线段BAy轴于点D将线段BD顺时针旋转60,D点的对应点为点E,是否存 x轴上的点Q,使得QD+QE的值最小,若存在请求出点Q的坐标,并求出OQD的度数; 若不存在,请说明理由.

查看答案和解析>>

同步练习册答案