【题目】(1)观察与归纳:在如图1所示的平面直角坐标系中,直线l与y轴平行,点M与点N 是直线l上的两点(点M在点N的上方).
①亮亮发现:若点M坐标为(2,3),点N坐标为(2,﹣4),则MN的长度为_____; ②亮亮经过多次取l上的两点后,他归纳出这样的结论:若点M坐标为(t,m),点N坐标为(t,n),当m>n时,MN的长度可表示为______;
(2)如图2,四边形OABC的顶点O是坐标原点,点A在第一象限,OAB=90,OA=AB,点C在第四象限,B点的坐标为(6,0),且OC=5.点P是线段OB上的一个动点(点P不与点0、B重合),过点P作与y轴平行的直线l,设点P横坐标为t.
①已知当t=4时,直线l恰好经过点C,求点A、C两点的坐标;
②在①的条件下,直线l上有一点M,当MB=OC时,直接写出满足条件的点M坐标;
③如图3延长线段BA交y轴于点D将线段BD顺时针旋转60,D点的对应点为点E,是否存 在x轴上的点Q,使得QD+QE的值最小,若存在请求出点Q的坐标,并求出OQD的度数; 若不存在,请说明理由.
【答案】 (1)7 m-n;(2)①A(3,3), C(4,-3),②M(4,)或(4,-); ③存在,Q(,0),OQD=600
【解析】试题分析:(1)直线l与y轴平行,M(x1,y1),N(x2,y2),M、N两点横坐标相等,再根据AB的长度为|y1﹣y2|即可求得,
(2) ①过A点作AEOB于点E,由直角三角形三边关系得出点A、C的坐标;②直接得出即可;③连接QD、BF,构造直角三角形和解直角三角形
试题解析:(1)① 7 ② m-n
(2)如图2. ①过A点作AEOB于点E,
OAB=900,OA=AB ,B(6,0),AEOB
∴OE=AE=BE=OB=3, AOB=AOB= 450,A(3,3).
在RtOPC中,OC=5,OP=4,得PC=3,
∴C(4,-3)
②M(4,)或(4,-)
③如图3.设D点关于x轴的对称点为点F,连接EF交x轴于点Q,
连接QD、BF,则DBO=FBO= BDO=BFO= 450,BD=BF,
OD=OB=6,DBF=900.
DBE=600,BD=BE,DBF=900,
∴FBE=1500,BE=BF,BFE=150,QFO=300,
由对称可知:QFO=QDO=300,得OQD=600.
设OQ=x,则DQ=2x
在RtODQ中,
∴
∴x=
∴ Q(,0)
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.
⑴若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;
⑵在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;⑶设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016山东省聊城市第22题)为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在甲,乙两个不透明口袋中各装有10个和3个形状大小完全相同的红色小球,则从中摸到红色小球的概率是P甲_____P乙(填“>”,“<”或“=”);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016广西省贺州市第9题)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )
A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com