5£®Èçͼ£¬ÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏABC=90¡ã£¬CD=8$\sqrt{2}$cm£¬BC=12cm£¬cos¡ÏC=$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóABºÍADµÄ³¤£»
£¨2£©ÈçÔÚÏß¶ÎBC¡¢ADÉÏÓж¯µãP¡¢M£¬µãPÒÔÿÃë1cmµÄËÙ¶È£¬´ÓµãBÑØÏß¶ÎÏòµãCÔ˶¯£»Í¬Ê±µãMÒÔÏàͬµÄËÙ¶È£¬´ÓµãDÑØÏß¶ÎDAÏòµãAÔ˶¯£¬µ±µãMµ½´ïµãAʱ£¬Á½µãͬʱֹͣÔ˶¯£¬¹ýµãP×÷ADµÄ´¹Ïߣ¬½»Ïß¶ÎBDÓÚµãF£¨µãF²»ÓëµãB¡¢DÖØºÏ£©£®ÉèµãP¶¯µÄʱ¼äΪt£¨Ã룩£¬ÔòÔÚµãP¡¢MÔÚ±ßBC¡¢DAÉÏÒÆ¶¯¹ý³ÌÖУ®
¢Ùµ±µãPÔ˶¯Ê±¼ätΪºÎֵʱ£¬¡÷BPFÓë¡÷DMFÏàËÆ£»
¢ÚÁª½áPM£¬Èç¹û¡÷PFMµÄÃæ»ýΪ2cm£¬ÇëÇó³öµãPµÄλÖ㮣¨Ö±½Óд³ö½á¹û£¬²»ÐèÒª¹ý³Ì£©

·ÖÎö £¨1£©¹ýµãD×÷DE¡ÍBC£¬´¹×ãΪE£¬ÏÈÖ¤Ã÷ËıßÐÎABEDÊǾØÐΣ¬È»ºóÔÚRt¡÷DECÖУ¬ÀûÓÃÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµÇóµÃDE¡¢ECµÄ³¤£¬´Ó¶ø¿ÉÇóµÃAB¡¢ADµÄ³¤£»
£¨2£©¢ÙÓÉ¡÷BPF¡×¡÷DMF£¬µÃµ½¡ÏBPF=¡ÏDMF=90¡ã£¬´Ó¶ø¿ÉÖª£ºµãP¡¢F¡¢MÔÚÒ»ÌõÖ±ÏßÉÏ£»
¢ÚÈçͼ3ºÍͼ4Ëùʾ£¬ÏÈÇóµÃtan¡ÏDBE=2£¬È»ºó·Ö±ð±íʾ³öPFºÍMNµÄ³¤£¬È»ºó¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½Áгö¹ØÓÚxµÄ·½³Ì£¬×îºó½âµÃtµÄÖµ£¬´Ó¶ø¿ÉÇóµÃµãPµÄλÖã®

½â´ð ½â£º£¨1£©¹ýµãD×÷DE¡ÍBC£¬´¹×ãΪE£®

¡ßAD¡ÎBC£¬
¡à¡ÏABC=¡ÏBAD=90¡ã£®
¡ßDE¡ÍBC£¬
¡à¡ÏDEB=90¡ã£®
¡à¡ÏABC=¡ÏBAD=¡ÏDEB=90¡ã£®
¡àËıßÐÎABEDÊǾØÐΣ®
¡àAB=DE£¬AD=BE£®
¡ßÔÚRt¡÷DECÖУ¬¡ÏC=45¡ã£¬CD=8$\sqrt{2}$£®
¡àEC=DE=DC•sin45¡ã=8$\sqrt{2}¡Á\frac{\sqrt{2}}{2}$=8£®
¡àAB=DE=8£¬AD=EB=BC-EC=12-8=4£®
£¨2£©¢ÙÈçͼ2Ëùʾ£º

¡ß¡÷BPF¡×¡÷DMF£¬
¡à¡ÏBPF=¡ÏDMF=90¡ã£®
¡ßPF¡ÍAD£¬
¡àµãP¡¢F¡¢MÔÚÒ»ÌõÖ±ÏßÉÏ£®
ÉèÔ˶¯Ê±¼äΪtÃëʱ£¬¡÷BPF¡×¡÷DMF£¬ÔòBP=t£¬DM=t£®
¡ßDM=PE£¬
¡à4-t=t£®
½âµÃ£ºt=2£®
¢ÚÈçͼ3Ëùʾ£»¹ýµãD×÷DE¡ÍBC£¬´¹×ãΪE£®

ÓÉ£¨1£©¿ÉÖª£ºDE=8£¬BE=4£®
¡ßtan¡ÏDBE=$\frac{DE}{BE}$=2£®
¡àPF=2BP=2t£®
MN=AD-AN-MD=4-t-t=4-2t£®
¡à$\frac{1}{2}¡Á2t¡Á£¨4-2t£©$=2£®
½âµÃ£ºt=1£®
¡àBP=1£®
Èçͼ4Ëùʾ£¬¹ýµãD×÷DE¡ÍBC£¬´¹×ãΪE£®

ÓÉ£¨1£©¿ÉÖª£ºDE=8£¬BE=4£®
¡ßtan¡ÏDBE=$\frac{DE}{BE}$=2£®
¡àPF=2BP=2t£®
MN=AN+MD-AD=2t-4£®
¡à$\frac{1}{2}¡Á2t¡Á£¨2t-4£©$=2£®
½âµÃ£º${t}_{1}=1-\sqrt{2}$£¨ÉáÈ¥£©£¬t2=1$+\sqrt{2}$£®
¡àPB=1$+\sqrt{2}$£®
×ÛÉÏËùÊö£¬µ±BP=1»òBP=1$+\sqrt{2}$ʱ£¬¡÷PFMµÄÃæ»ýΪ2cm2£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊÇÈñ½ÇÈý½Çº¯ÊýµÄ¶¨Òå¡¢¾ØÐεÄÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÐÔÖÊ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½¡¢½âÒ»Ôª¶þ´Î·½³ÌµÄÓ¦Ó㬸ù¾ÝÌâÒâ»­³ö·ûºÏÌâÒâµÃͼÐÎÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ìî¿Õ£º
7a-3a=£¨7-3£©a=4a£»
4x2+2x2=£¨4+2£©x2=6x2£»
5ab2-13ab2=£¨5-13£©ab2=-8ab2£»
-9x2y2+5x2y2=£¨-9+5£©x2y2=-4x2y2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¹ØÓÚxµÄ·½³Ìx2-mx-m-1=0£¨mΪ³£Êý£©£®
£¨1£©ÇóÖ¤£º·½³ÌÓÐÁ½¸öʵÊý¸ù£»
£¨2£©Éèx1£¬x2ÊÇ·½³ÌµÄÁ½¸öʵÊý¸ù£¬ÇÒ2x1-x2=5£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼ºÖª£ºÈçͼ£¬µÈ±ß¡÷ABCÖУ¬D¡¢E·Ö±ðÊÇBC¡¢ACÉϵĵ㣬ÇÒ¡ÏADE=60¡ã
£¨1£©ÇóÖ¤£º¡÷ABD¡×¡÷DCE£»
£¨2£©ÈôBD=1£¬EC=3£¬Çó¡÷ABCµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ä³ÖÖϸ°ûµÄƽ¾ù°ë¾¶ÊÇ0.0036m£¬ÓÿÆÑ§¼ÇÊý·¨¿É±íʾΪ3.6¡Á10-3m£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬ÒÑÖª¡ÑPµÄ°ë¾¶Îª1£¬Ô²ÐÄPÔÚÖ±Ïßy=x-1µÄͼÏóÉÏÔ˶¯£®µ±¡ÑPÓëxÖáÏàÇÐʱ£¬ÔòPµãµÄ×ø±êΪ£¨2£¬1£©»ò£¨0£¬-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈçͼËùʾ£¬AB=AD£¬AC=AE£¬BC=DE£¬Èç¹û¡ÏEAD=70¡ã£¬¡ÏCAD=40¡ã£¬Çó¡ÏBADµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+k=0ÓÐʵÊý¸ù£¬Ôò£¨¡¡¡¡£©
A£®k£¼0B£®k£¾0C£®k¡Ý0D£®k¡Ü0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®-22=-4£»£¨-2£©3=-8£»-2µÄƽ·½ÊÇ4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸