精英家教网 > 初中数学 > 题目详情
如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.
(1)线段AC是⊙O的切线。理由见解析(2)12
解:(1)线段AC是⊙O的切线。理由如下:
∵∠CAD=∠CDA(已知),∠BDO=∠CDA(对顶角相等),
∴∠BDO=∠CAD(等量代换)。
又∵OA=OB(⊙O的半径),∴∠B=∠OAB(等边对等角)。
∵OB⊥OC(已知),∴∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°。
∴线段AC是⊙O的切线。
(2)设AC=x.
∵∠CAD=∠CDA(已知),∴DC=AC=x(等角对等边)。
∵OA=5,OD=1,∴OC=OD+DC=1+x;
∵由(1)知,AC是⊙O的切线,
∴在Rt△OAC中,根据勾股定理得,OC2=AC2+OA2,即(1+x)2=x2+52,解得x=12。
∴AC=12.
(1)根据已知条件“∠CAD=∠CDA”、对顶角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根据等腰三角形OAB的两个底角相等、直角三角形的两个锐角互余的性质推知
∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°。所以线段AC是⊙O的切线。
(2)根据“等角对等边”可以推知AC=DC,所以由图形知OC=OD+CD;然后利用(1)中切线的性质可以在在Rt△OAC中,根据勾股定理来求AC的长度。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.
(Ⅰ)探究新知:
如图①⊙O是△ABC的内切圆,与三边分别相切于点E、F、G..
(1)求证内切圆的半径r1="1;"
(2)求tan∠OAG的值;
(Ⅱ)结论应用
(1)如图②若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC、AB相切,⊙O2与BC、AB相切,求r2的值;
(2)如图③若半径为rn的n个等圆⊙O1、⊙O2、…、⊙On依次外切,且⊙O1与AC、AB相切,⊙On与BC、AB相切,⊙O1、⊙O2、…、⊙On均与AB相切,求rn的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,A、B、C是⊙O上的三点,已知∠O=60º,则∠C=              (    )

A.20º      B.25º      C.30º       D.45º

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径作圆,则点C与⊙A的位置关系为             .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为(     )
A.5米B.5C.7米D.8米

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有一个底面半径为3cm,母线长10cm的圆锥,则其侧面积是    ▲   cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.
(1)求证:∠OPB=∠AEC;
(2)若点C为半圆的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,
当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______

(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在半径为R的圆中,垂直平分半径的弦长等于
A.B.C.D.R

查看答案和解析>>

同步练习册答案