精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.
(1)求证:∠OPB=∠AEC;
(2)若点C为半圆的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.
(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,
∴PB⊥AB.
∴∠OPB+∠POB=90°.
∵OP⊥BC,
∴∠ABC+∠POB=90°.
∴∠ABC=∠OPB.
又∵∠AEC=∠ABC,
∴∠OPB=∠AEC.
(2)解:四边形AOEC是菱形.
∵OP⊥弦BC于点D且交⊙O于点E,∴=
∵C为半圆ACB¯的三等分点,∴==
∴∠ABC=∠ECB.∴AB∥CE.
∵AB是⊙O的直径,∴AC⊥BC.
又 OP⊥弦BC于点D且交⊙O于点E,
∴AC∥OE.∴四边形AOEC是平行四边形.
又 OA=OE,∴四边形AOEC是菱形.
(1)找中间量∠ABC,利用等角的余角相等证∠ABC=∠OPB,同弧所对的圆周角相等即可
(2)利用用一组邻边相等的平行四边形是菱形及两组对边分别平行的四边形是平行四边形即可。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.
(1)求证:四边形ABED为矩形;
(2)若AB=4, ,求CF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有一矩形ABCO,B点的坐标为(12,6),点C、A在坐标轴上.⊙A、⊙P的半径均为1,点P从点C开始在线段CO上以1单位/秒的速度向左运动,运动到点O处停止.与此同时,⊙A的半径每秒钟增大2个单位,当点P停止运动时,⊙A的半径也停止变化.设点P运动的时间为t秒.
(1)在0<t<12时,设△OAP的面积为s,试求s与t的函数关系式.并求出当t为何值时,s为矩形ABCO面积的
(2)在点P的运动过程中,是否存在某一时刻,⊙A与⊙P相切,若存在求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1与⊙O2的半径分别为4和6,O1O2=2,则⊙O1与⊙O2的位置关系是【   】
A.内切B.相交C.外切D.外离

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为  ▲  cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC为直径的半圆O交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若⊙O1,⊙O2的半径是r1="2," r2=4,圆心距d=5,则这两个圆的位置关系是【   】
A.内切B.相交C.外切D.外离

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若等边三角形ABC的边长为cm,以点A为圆心,以3cm为半径作⊙A,则BC所在直线与⊙A的位置关系是_________.

查看答案和解析>>

同步练习册答案