精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC

重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )

A. 3 B. 4

C. 5 D. 6

【答案】D

【解析】

试题先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.

解:四边形ABCD是矩形,AD=8

∴BC=8

∵△AEF△AEB翻折而成,

∴BE=EF=3AB=AF△CEF是直角三角形,

∴CE=8﹣3=5

Rt△CEF中,CF===4

AB=x

Rt△ABC中,AC2=AB2+BC2,即(x+42=x2+82,解得x=6

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于C点,且A(﹣2,0)、B(4,0),其顶点为D,连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.

(1)求抛物线的解析式,并写出顶点D的坐标;
(2)设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取值最大值时,过点P作x轴的垂线,垂足为F,连接EF,△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.

(1)直接写出小明所走路程s与时间t的函数关系式;
(2)小明出发多少时间与爸爸第三次相遇?
(3)在速度都不变的情况下,小明希望比爸爸早20min到达公园,则小明在步行过程中停留的时间需作怎样的调整?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.

(1)求证:△ABD∽△AEB;
(2)当 = 时,求tanE;
(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对英语客观题的“听力部分、单项选择、完型填空、阅读理解、口语应用”进行了问卷调查,要求每位考生都自主选择其中一个类型,为此随机调查了各考点部分考生的意向.并将调查结果绘制成如图的统计图表(问卷回收率为100%,并均为有效问卷).
被调查考生选择意向统计表

题型

所占百分比

听力部分

a

单项选择

35%

完型填空

b

阅读理解

10%

口语应用

c

根据统计图表中的信息,解答下列问题:

(1)求本次被调查的考生总人数及a、b、c的值;
(2)将条形统计图补充完整;
(3)全市参加这次中考的考生共有42000人,试估计全市考生中最喜欢做“单项选择”这类客观题的考生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,直线ab,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点.

(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、2、3之间有怎样的大小关系?请说明理由;

(2)如图2,当点P在线段AB的延长线上运动时,∠1、2、3之间的大小关系为________;

(3)如图3,当点P在线段BA的延长线上运动时,∠1、2、3之间的大小关系为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.

(1)求证:△ADE≌△CBF;
(2)若AC与BD相交于点O,求证:AO=CO.

查看答案和解析>>

同步练习册答案