试题分析:(1)根据一次函数y=k
1x+b的图象经过A(0,﹣2),B(1,0)可得到关于b、k
1的方程组,进而可得到一次函数的解析式,设M(m,n)作MD⊥x轴于点D,由△OBM的面积为2可求出n的值,将M(m,4)代入y=2x﹣2求出m的值,由M(3,4)在双曲线
上即可求出k
2的值,进而求出其反比例函数的解析式;
(2)过点M(3,4)作MP⊥AM交x轴于点P,由MD⊥BP可求出∠PMD=∠MBD=∠ABO,再由锐角三角函数的定义可得出OP的值,进而可得出结论.
解:(1)∵直线y=k
1x+b过A(0,﹣2),B(1,0)两点
∴
,
∴
∴已知函数的表达式为y=2x﹣2.(3分)
∴设M(m,n),作MD⊥x轴于点D
∵S
△OBM=2,
∴
,
∴
∴n=4(5分)
∴将M(m,4)代入y=2x﹣2得4=2m﹣2,
∴m=3
∵M(3,4)在双曲线
上,
∴
,
∴k
2=12
∴反比例函数的表达式为
(2)过点M(3,4)作MP⊥AM交x轴于点P,
∵MD⊥BP,
∴∠PMD=∠MBD=∠ABO
∴tan∠PMD=tan∠MBD=tan∠ABO=
=2(8分)
∴在Rt△PDM中,
,
∴PD=2MD=8,
∴OP=OD+PD=11
∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)(10分)
点评:本题考查的是反比例函数与一次函数的交点问题,涉及到的知识点为用待定系数法求一次函数与反比例函数的解析式、锐角三角函数的定义,熟知以上知识是解答此题的关键.