精英家教网 > 初中数学 > 题目详情
如图.点P是边长为1的正方形ABCD对角线AC上的一个动点(P不与A,C重合)且PE=PB 
(1)求证:PE⊥PD.
(2)设AP=x,四边形PECD的面积为y,求出y与x的关系式,并写出自变量的取值范围.
分析:(1)首先证明:△PBC≌△PDC,利用全等三角形的性质可得:∠GDP=∠EPF,而∠GDP+∠GPD=90°,那么可得出∠GPD+∠EPF=90°,由此可得出PD⊥PE.
(2)作出三角形的高,用未知数表示出即可.
解答:(1)证明∵四边形ABCD是正方形,AC为对角线,
∴BC=DC,∠BCP=∠DCP=45°.
∵PC=PC,
∴△PBC≌△PDC (SAS).
∴PB=PD,∠PBC=∠PDC.
∵PB=PE,
∴∠PBE=∠PEB,
∴∠PEB=∠PDC,
∴∠PEB+∠PEC=∠PDC+∠PEC=180°,
∴∠DPE=360°-(∠BCD+∠PDC+∠PEC)=90°,
∴PE⊥PD;

(2)过点P作PF⊥BC,垂足为F,则BF=FE.(如图3)
∵AP=x,AC=
2
,∠ACB=45°,PF⊥BC,
∴PC=
2
-x,PF=FC=1-
2
2
x,BF=FE=1-FC=1-(1-
2
2
x)=
2
2
x,
∴S△PBE=
1
2
EB•FP=BF•PF=-
1
2
x2+
2
2
x,
∴四边形PECD的面积为y=2S△BPC-S△PBE=2S△PBE=-x2+
2
x.
点评:本题主要考查了正方形,矩形的性质,全等三角形的判定,列二次函数关系式,通过构建全等三角形来得出相关的边和角相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是(  )
A、2
B、1
C、
2
D、
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是边长为4的正方形ABCD的边AD上一点并且不与点A、D重合,MN是线段BP的精英家教网垂直平分线,与AB、BP、CD分别交于点M、O、N,设AP=x.
(1)求BM(结果用含有x的代数式表示);
(2)请你判断四边形MNCB的面积是否有最小值?若有最小值,求出使其面积取得最小值时的x的值并求出面积的最小值;若没有最小值,说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是边长为1的菱形ABCD的对角线AC上一动点,点M、N分别是AB、BC中点,求MP+NP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:点P是边长为1的正方形内(不在边上)任意一点,P和正方形各顶点相连后把正方形分成4块,其中①③可以重新拼成一个四边形,重拼后的四边形周长的最小值是
2
2
2
2

查看答案和解析>>

同步练习册答案