精英家教网 > 初中数学 > 题目详情

如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.

解:BD=AE,AE⊥BD;
证明:∵AB∥CE,∠BAC=90°,
∴∠ACE=90°,
在△ABD和△CAE中,

∴△ABD≌△CAE(SAS),
∴BD=AE.
∴:∠ABD+∠EAB=∠ACE+∠EAB=90°
∴AE⊥BD
∴BD=AE,AE⊥BD;
分析:先证∠ABD=∠CAE,再证△ABD≌△CAE即可得出答案.
点评:本题考查等腰三角形的性质,难度不大,注意利用全等三角形的知识证明线段的相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案