精英家教网 > 初中数学 > 题目详情
11.甲、乙两人在10千米环形公路上练习跑步1小时,已知甲每分钟跑230米,乙每分钟跑170米.
(1)若甲、乙从同地反向出发x分钟,则两人相距多少米?
(2)若甲、乙从同地同向出发y分钟,则两人相距多少米?

分析 (1)反向出发时,两人间的距离等于环形跑道长度减去两人的路程和;
(2)同向出发时,两人间的距离等于甲的路程与乙的路程差.

解答 解:(1)若甲、乙从同地反向出发x分钟,则两人相距10000-(230x+170x)=10000-400x米;

(2)若甲、乙从同地同向出发y分钟,则两人相距230y-170y=60y米.

点评 本题主要考查列代数式的能力,掌握同向和反向运动时路程间的相等关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,已知AB∥CD∥EF,且∠A=50°,∠F=120°,DG平分∠ADF,求∠CDG的度数.
解:∵AB∥CD
∴∠A=∠ADC两直线平行,内错角相等;
又∵∠A=50°
∴∠ADC=50°;
∵CD∥EF
∴∠F+∠CDF=180°(两直线平行,同旁内角互补 );
又∵∠F=120°
∴∠CDF=60°;∴∠ADF=110°;
∵DG平分∠ADF
∴∠ADG=$\frac{1}{2}$∠ADF=55°°角平分线的意义或定义;
∴∠CDG=∠ADG-∠ADC=15°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知美国纽约与北京的时差为-13h,日本东京与北京的时差为+1h(比北京时间早记为+,比北京时间晚记为-),小明、小军分别在北京乘坐早晨7点的航班飞行20h和9h到达纽约和东京,问二人到达目的地时当地时间各是几点?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.定义:既有外接圆,又有内切圆的凸多边形叫做双圆多边形.如图1,⊙O1是△ABC外接圆,⊙O2是△ABC的内切圆,则△ABC就是双圆三角形.
(1)请写出一个双圆四边形的名你正方形;
(2)如图2,已知四边形ABCD是双圆四边形,其内切圆与四条边相切于点E,F,G,H,且EG是内切圆的直径,交弦FH于点P,连接EF,FG.
①当∠FGE=40°时,求∠BFE的度数;
②求证:HF⊥GE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若m与-2$\frac{2}{3}$互为倒数,则m=-$\frac{3}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,△ABC内接于⊙O,AB=AC,过点C作⊙O的直径CD,连接BD.
(1)求证:∠BDC=2∠ABD;
(2)连接OA,求证:OA∥BD;
(3)在(2)的条件下,过点D作DE⊥AB,垂足为E,延长DE交AC于F,当F为AC的中点时,若DE=4,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)(2a2b2c)4z÷(-2ab2c22
(2)(3x3y3z)4÷(3x3y2z)2÷($\frac{1}{2}$x2y6z);
(3)(72x3y4-36x2y2+9xy2)÷(-9xy2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,四边形ABCD中,∠C=90°,∠B=60°,AB=8,BC=CD=6,点E是AB上一点,过点E作EG∥BC,EF∥DC,分别交CD,BC于点G,F.
(1)试判断四边形EFCG的形状并加以证明;
(2)四边形EFCG可以是正方形吗?若可以,请在图2中画出正方形EFCG,并简要说明画图方法,若不可以,请说明理由;
(3)当BE的长为多少时,四边形EFCG的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,∠A=60°,BE1平分∠ABC,CE1平分∠ACD,则∠E1=30°;BE2平分∠E1BC,CE2平分∠E1CD,则∠E2=15°;…;BEn平分∠En-1BC,CEn平分∠En-1CD,则∠En=$\frac{60°}{{2}^{n}}$.

查看答案和解析>>

同步练习册答案