精英家教网 > 初中数学 > 题目详情
已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.
分析:过点E作EG⊥BC于G,过点M作MH⊥CD于H,根据正方形的性质可得EG=MH,EG⊥MH,再根据同角的余角相等求出∠1=∠2,然后利用“角边角”证明△EFG和△MNH全等,根据全等三角形对应边相等证明即可.
解答:证明:如图,过点E作EG⊥BC于G,过点M作MH⊥CD于H,
∵四边形ABCD是正方形,
∴EG=MH,EG⊥MH,
∴∠1+∠3=90°,
∵EF⊥MN,
∴∠2+∠3=90°,
∴∠1=∠2,
∵在△EFG和△MNH中,
∠1=∠2
EG=MH
∠EGF=∠MHN=90°

∴△EFG≌△MNH(ASA),
∴EF=MN.
点评:本题考查了正方形的性质,全等三角形的判定与性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图所示,直线l的解析式为y=
34
x-3,并且与x轴、y轴分别相交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/每秒的速度向x轴正方向运动,问什么时刻该圆与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0精英家教网.5个单位/秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上一共运动了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,直线l的解析式为y=
34
x-3
,并且与x轴、y轴分别交于点A、B.
(1)求A、B两点的坐标;
(2)半径为0.75的⊙O1,以0.4个单位/秒的速度从原点向x轴正方向运动,问在什么时刻与直线l相切;
(3)在第(2)题的条件下,在⊙O1运动的同时,与之大小相同的⊙O2从点B出发,沿BA方向运动,两圆经过的区域重叠部分是什么形状的图形?并求出其面积.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年江苏省无锡市惠山六校联考九年级上学期期中考试数学试卷(解析版) 题型:解答题

已知:如图所示,直线l的解析式为,并且与x轴、y轴分别交于点A、B.

(1)求A、B两点的坐标;

(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/秒的速度向x轴正方向运动,问在什么时刻与直线l相切;

(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿射线BA方向以0.5个单位/秒的速度运动,设t秒时点P到动圆圆心的距离为s,求s与t的关系式;

(4)问在整个运动过程中,点P在动圆的圆面(圆上和圆内部)上,一共运动了多长时间?

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省苏州市新区一中九年级(上)月考数学试卷(12月份)(解析版) 题型:解答题

已知:如图所示,直线l的解析式为y=x-3,并且与x轴、y轴分别相交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/每秒的速度向x轴正方向运动,问什么时刻该圆与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0.5个单位/秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上一共运动了多长时间?

查看答案和解析>>

科目:初中数学 来源:《24.2 与圆有关的位置关系》2010年同步测试(解析版) 题型:解答题

已知:如图所示,直线l的解析式为y=x-3,并且与x轴、y轴分别相交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/每秒的速度向x轴正方向运动,问什么时刻该圆与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0.5个单位/秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上一共运动了多长时间?

查看答案和解析>>

同步练习册答案