精英家教网 > 初中数学 > 题目详情
1.在平面直角坐标系中,点A(-2,3)关于x轴对称的对称点B的坐标为(  )
A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)

分析 利用关于x轴对称点的性质得出B点坐标即可.

解答 解:∵点A(-2,3),
∴关于x轴对称的对称点B的坐标为:(-2,-3).
故选:B.

点评 此题主要考查了关于x轴对称点的性质,正确把握横纵坐标关系是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.观察下列各式及验证过程:
$\sqrt{\frac{1}{2}-\frac{1}{3}}$=$\frac{1}{2}$$\sqrt{\frac{2}{3}}$,验证:$\sqrt{\frac{1}{2}-\frac{1}{3}}$=$\sqrt{\frac{1}{2×3}}$=$\sqrt{\frac{2}{{2}^{2}×3}}$=$\frac{1}{2}$$\sqrt{\frac{2}{3}}$;
$\sqrt{\frac{1}{2}(\frac{1}{3}-\frac{1}{4})}$=$\frac{1}{3}$$\sqrt{\frac{3}{8}}$,验证:$\sqrt{\frac{1}{2}(\frac{1}{3}-\frac{1}{4})}$=$\sqrt{\frac{1}{2×3×4}}$=$\sqrt{\frac{3}{2×{3}^{2}×4}}$=$\frac{1}{3}$$\sqrt{\frac{3}{8}}$;
$\sqrt{\frac{1}{3}(\frac{1}{4}-\frac{1}{5})}$=$\frac{1}{4}$$\sqrt{\frac{4}{15}}$,验证:$\sqrt{\frac{1}{3}(\frac{1}{4}-\frac{1}{5})}$=$\sqrt{\frac{1}{3×4×5}}$=$\sqrt{\frac{4}{3×{4}^{2}×5}}$=$\frac{1}{4}$$\sqrt{\frac{4}{15}}$;
$\sqrt{\frac{1}{4}(\frac{1}{5}-\frac{1}{6})}$=$\frac{1}{5}$$\sqrt{\frac{5}{24}}$,验证:$\sqrt{\frac{1}{4}(\frac{1}{5}-\frac{1}{6})}$=$\sqrt{\frac{1}{4×5×6}}$=$\sqrt{\frac{5}{4×{5}^{2}×6}}$=$\frac{1}{5}$$\sqrt{\frac{5}{24}}$;
(1)按照上述四个等式及其验证过程的基本思路,猜想$\sqrt{\frac{1}{5}(\frac{1}{6}-\frac{1}{7})}$的变形结果并进行验证;
(2)针对上述各式反映的规律,写出用n(n≥1为整数)表示的等式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.将抛物线y=2x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为(  )
A.y=2(x-3)2+4B.y=2(x+4)2+3C.y=2(x-4)2+3D.y=2(x-4)2-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程:x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
∴$\left\{\begin{array}{l}x=1\\ x-1=2\end{array}\right.$或$\left\{\begin{array}{l}x=2\\ x-1=1\end{array}\right.$或$\left\{\begin{array}{l}x=-1\\ x-1=-2\end{array}\right.$或$\left\{\begin{array}{l}x=-2\\ x-1=-1.\end{array}\right.$
解上面第一、四方程组,无解;解第二、三方程组,得 x=2或x=-1
∴x=2或x=1
请问:这个解法对吗?试说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某公司有某种海产品2104千克,寻求合适价格,进行8填试销,情况如下:
第几天12345678
销售(元/千克)400A250240200150125120
销售量(千克)304048B608096100
观察表中数据,发现可以用某种函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假设这批海产品的销售中,每天销售量y(千克)与销售价格x(元/千克)之间都满足这一关系
(1)猜想函数关系式:y=$\frac{12000}{x}$.(不必写出自变量的取值范围)并写出表格中A=300B=50
(2)试销8天后,公司决定将售价定为150元/千克.则余下海产品预计20天可全部售出.
(3)按(2)中价格继续销售15天后,公司发现剩余海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新价格销售,那么新确定的价格最高不超过多少元/千克才能完成销售任务?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD于点E,则△CDE的周长为6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.四张完全相同的卡片上,分别画有线段、等边三角形、平行四边形、圆,现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知y-1与x成正比,当x=2时,y=9;那么当y=-15时,x的值为(  )
A.4B.-4C.6D.-6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在平面直角坐标系中,直线x=-$\sqrt{3}x$+4$\sqrt{3}$分别交x轴,y轴于点A、B,C为AB的中点,动点D从原点O出发,以每秒1个单位的速度向终点A运动,过点D作OA的垂线,分别交直线AB,OC于点P,Q,以PQ为一边向左侧作正三角形EPQ,如图所示,设点D的运动时间为t(秒),△EPQ和△OBC重叠部分的面积为S(平方单位).
(1)求点C的坐标;
(2)若点E恰好在y轴上,求t的值;
(3)当0<t<2时,求S关于t的函数关系式,并求S的最大值.

查看答案和解析>>

同步练习册答案