11£®£¨1£©-£¨-3£©2¡Á2                      
£¨2£©$\frac{1}{2}$+£¨-$\frac{2}{3}$£©+$\frac{4}{5}$+£¨-$\frac{1}{2}$£©+£¨-$\frac{1}{3}$£©
£¨3£©-82+72¡Â£¨-36£©£¨4£©8+£¨-$\frac{1}{3}$£©-2.5-£¨+1$\frac{2}{3}$£©
£¨5£©2$\frac{1}{2}$¡Á$\frac{1}{4}$¡Â£¨$\frac{1}{8}$-2£©
£¨6£©£¨-5£©+£¨-6£©-£¨+12£©-£¨-7£©
£¨7£©11.8¡Á3$\frac{3}{4}$-£¨-11.8£©¡Á1.7-11.8¡Á$\frac{3}{4}$-11.8¡Á£¨-0.3£©
£¨8£©£¨-5£©¡Á£¨-3$\frac{6}{7}$£©+£¨-7£©¡Á£¨-3$\frac{6}{7}$£©+12¡Á£¨-3$\frac{6}{7}$£©
£¨9£©1-2-3+4+5-6-7+8+9-10-11+12+¡­+2005-2006-2007+2008£®

·ÖÎö £¨1£©ÏÈËã³Ë·½£¬ÔÙËã³Ë·¨£»
£¨2£©ÀûÓüӷ¨½»»»ÂÉÓë½áºÏÂÉ£¬½«·ÖĸÏàͬµÄ·ÖÊý½áºÏÔÚÒ»Æð£»
£¨3£©ÏÈËã³ý·¨£¬ÔÙËã¼Ó·¨£»
£¨4£©ÏȽ«¼õ·¨×ª»¯Îª¼Ó·¨£¬ÔÙ¼ÆËã¼Ó·¨¼´¿É£»
£¨5£©ÏÈËãÀ¨ºÅ£¬ÔÙ´Ó×óÍùÓÒÒÀ´Î¼ÆË㣻
£¨6£©ÏȽ«¼õ·¨×ª»¯Îª¼Ó·¨£¬ÔÙ¼ÆËã¼Ó·¨¼´¿É£»
£¨7£©ÀûÓó˷¨·ÖÅäÂɼÆË㣻
£¨8£©ÀûÓó˷¨·ÖÅäÂɼÆË㣻
£¨9£©ÏȰÑËÄÏîÒ»×é½øÐмÆË㣬ÔÙÏà¼Ó¼´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©-£¨-3£©2¡Á2
=-9¡Á2
=-18£»                      
£¨2£©$\frac{1}{2}$+£¨-$\frac{2}{3}$£©+$\frac{4}{5}$+£¨-$\frac{1}{2}$£©+£¨-$\frac{1}{3}$£©
=£¨$\frac{1}{2}$-$\frac{1}{2}$£©+£¨-$\frac{2}{3}$-$\frac{1}{3}$£©+$\frac{4}{5}$
=0-1+$\frac{4}{5}$
=-$\frac{1}{5}$£»
£¨3£©-82+72¡Â£¨-36£©
=-82-2
=-84£»
£¨4£©8+£¨-$\frac{1}{3}$£©-2.5-£¨+1$\frac{2}{3}$£©
=£¨8-2.5£©+£¨-$\frac{1}{3}$-1$\frac{2}{3}$£©
=5.5-2
=3.5£»
£¨5£©2$\frac{1}{2}$¡Á$\frac{1}{4}$¡Â£¨$\frac{1}{8}$-2£©
=$\frac{5}{2}$¡Á$\frac{1}{4}$¡Á£¨-$\frac{8}{15}$£©
=-$\frac{1}{3}$£»
£¨6£©£¨-5£©+£¨-6£©-£¨+12£©-£¨-7£©
=-5-6-12+7
=-23+7
=-16£»
£¨7£©11.8¡Á3$\frac{3}{4}$-£¨-11.8£©¡Á1.7-11.8¡Á$\frac{3}{4}$-11.8¡Á£¨-0.3£©
=11.8¡Á£¨3$\frac{3}{4}$+1.7-$\frac{3}{4}$+0.3£©
=11.8¡Á5
=59£»
£¨8£©£¨-5£©¡Á£¨-3$\frac{6}{7}$£©+£¨-7£©¡Á£¨-3$\frac{6}{7}$£©+12¡Á£¨-3$\frac{6}{7}$£©
=£¨-5-7+12£©¡Á£¨-3$\frac{6}{7}$£©
=0¡Á£¨-3$\frac{6}{7}$£©
=0£»
£¨9£©1-2-3+4+5-6-7+8+9-10-11+12+¡­+2005-2006-2007+2008
=£¨1-2-3+4£©+£¨5-6-7+8£©+£¨9-10-11+12£©+¡­+£¨2005-2006-2007+2008£©
=0£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÓÐÀíÊýµÄÔËËãÄÜÁ¦£®×¢Ò⣺
£¨1£©ÒªÕýÈ·ÕÆÎÕÔËËã˳Ðò£¬ÔÚ»ìºÏÔËËãÖÐÒªÌØ±ð×¢ÒâÔËËã˳Ðò£ºÏÈÈý¼¶£¬ºó¶þ¼¶£¬ÔÙÒ»¼¶£»ÓÐÀ¨ºÅµÄÏÈËãÀ¨ºÅÀïÃæµÄ£»Í¬¼¶ÔËËã°´´Ó×óµ½ÓÒµÄ˳Ðò£»
£¨2£©È¥À¨ºÅ·¨Ôò£º--µÃ+£¬-+µÃ-£¬++µÃ+£¬+-µÃ-£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈçͼÊÇÒ»¸ö³ÌÐòÔËË㣬ÈôÊäÈëµÄxΪ-1£¬ÔòÊä³öyµÄ½á¹ûΪ-30£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º
£¨1£©£¨a+b£©2-2a£¨b+1£©-a2£¬ÆäÖÐa=-$\frac{1}{2}$£¬b=2
£¨2£©a£¨2-a£©-£¨a+1£©£¨a-1£©+£¨a-1£©2£¬ÆäÖÐa=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ð´³ö¼ÆËã¹ý³Ì
£¨1£©-$\frac{1}{4}$-1$\frac{3}{4}$+3.75-0.25-3$\frac{1}{2}$          
£¨2£©£¨-$\frac{2}{3}$-$\frac{5}{6}$+$\frac{11}{12}$£©¡Â$\frac{1}{24}$£®
£¨3£©29$\frac{23}{24}$¡Á£¨-12£©
£¨4£©£¨-7£©¡Á£¨-3$\frac{1}{7}$£©-£¨-8£©¡Á3$\frac{1}{7}$+£¨-22£©¡Á£¨3$\frac{1}{7}$£©
£¨5£©32¡Á£¨-$\frac{2}{3}$£©6¡Á£¨1-$\frac{2}{3}$£©3
£¨6£©4-£¨-2£©4-3¡Â£¨-1£©3+0¡Á£¨-2£©3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®½«¶àÏîʽ-2x-x3+2x2+5°´½µÃÝÅÅÁУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®x3-2x+2x2+5B£®5-2x+2x2-x3C£®-x3+2x2+2x+5D£®-x3+2x2-2x+5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¼ÆË㣺$\sqrt{2}$sin45¡ã-2cos60¡ã=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èç¹ûa+b£¾0£¬ÇÒab£¾0£¬ÄÇô£¨¡¡¡¡£©
A£®a£¾0£¬b£¾0B£®a£¼0£¬b£¼0
C£®a¡¢bÒìºÅÇÒÕýÊýµÄ¾ø¶ÔÖµ½ÏСD£®a¡¢bÒìºÅÇÒ¸ºÊýµÄ¾ø¶ÔÖµ½ÏС

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚʵÊý·¶Î§ÄÚ·Ö½âÒòʽ£º4a3-8a=4a£¨a+$\sqrt{2}$£©£¨a-$\sqrt{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èç¹ûÓÐÀíÊýa¡¢b¡¢cÔÚÊýÖáÉϵÄλÖÃÈçͼËùʾ£¬
£¨1£©Ôòa+b£¼0£¬a-c£¾0£¬b+c£¼0£®
£¨2£©ÊÔ»¯¼ò|a+b|+|a-c|-|b+c|£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸