精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的⊙O交AC于点E,F是⊙O上的点,且AF=BF.
(1)求证:BC是⊙O的切线;
(2)若sinC=数学公式,AE=数学公式,求sinF的值和AF的长.

解:(1)证明:∵DA=DB(已知),
∴∠DAB=∠DBA(等边对等角);
又∵∠C=∠DBC(已知),
∴∠DBA﹢∠DBC=(∠DAB+∠DBA+∠C+∠DBC)=×180°=90°(三角形内角和定理),即∠ABC=90°,
∴AB⊥BC,
又∵点B在⊙O上,
∴BC是⊙O的切线;

(2)如图,连接BE,BF.
∵AB是⊙O的直径(已知),
∴∠AEB=90°(直径所对的圆周角是直角),
∴∠EBC+∠C=90°(直角三角形的两个锐角互余),
∵∠ABC=90°(由(1)知),
∴∠ABE+∠EBC=90°,
∴∠C=∠ABE(等量代换);
又∵∠AFE=∠ABE(同弧所对的圆周角相等),
∴∠AFE=∠C(等量代换),
∴sin∠AFE=sin∠ABE=sinC,
∴sin∠AFE=
∴∠AFB=90°,
在Rt△ABE中,AB==5
∵AF=BF(已知),
∴AF=BF=5.
分析:(1)欲证BC是⊙O的切线,只需证明∠ABC=90°即可;
(2)如图,连接BE,BF,构建Rt△AEB和Rt△AFB.利用圆周角定理(同弧所对的圆周角相等)、等量代换以及切线的性质推知所求的∠F与已知∠C的数量关系sin∠AFE=sin∠ABE=sinC;然后利用锐角三角函数的定义可以求得sinF的值和AF的长.
点评:本题考查了切线的判定与性质、圆周角定理以及解直角三角形.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案