如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.
(1)求一次函数和反比例函数的解析式;
(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?
(1)一次函数的解析式为y=﹣2x﹣3,反比例函数的解析式为y=﹣;
(2)当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.
解析试题分析:(1)将A、P的坐标分别代入y=kx+b即可得,将A的坐标代入y=中即可得
(2)求出交点B的坐标,由A的坐标,然后根据一次函数图象位于反比例函数图象的下方,可得答案.
试题解析:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),
∴,解得,
∴一次函数的解析式为y=﹣2x﹣3,
反比例函数y=(m≠0)的图象过点A(﹣2,1),
∴,解得m=﹣2,
∴反比例函数的解析式为y=﹣;
(2),
解得,或,
∴B(,﹣4)
由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.
考点:1、一次函数;2、反比例函数;3、函数与不等式
科目:初中数学 来源: 题型:解答题
A城有肥料300吨,B城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A城运往甲乡的肥料为x吨.
(1)请你填空完成下表中的每一空:
调入地 化肥量(吨) 调出地 | 甲乡 | 乙乡 | 总计 |
A城 | x | _________ | 300 |
B城 | _________ | _________ | 200 |
总计 | 260 | 240 | 500 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.
(1)求一次函数与反比例的解析式;
(2)直接写出当x<0时,kx+b﹣>0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,正方形的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是( )
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):
方案一:提供8000元赞助后,每张票的票价为50元;
方案二:票价按图中的折线OAB所表示的函数关系确定.
(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?
(2)求方案二中y与x的函数关系式;
(3)至少买多少张票时选择方案一比较合算?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
下表中,y是x的一次函数.
x | 2 | 1 | 2 | | 5 |
y | 6 | 3 | | 12 | 15 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.
(1)点F在边BC上.
①如图1,连接DE,AF,若DE⊥AF,求t的值;
②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?
(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在平面直角坐标系xOy中,直线l与直线 y= -2x关于y轴对称,直线l与反比例函数的图象的一个交点为A(2, m).
(1)试确定反比例函数的表达式;
(2)若过点A的直线与x轴交于点B,且∠ABO=45°,直接写出点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;
(2)若直线MN上存在点P,使得PA+PB的值最小,请直接写出PA的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com