精英家教网 > 初中数学 > 题目详情
(2013•武汉模拟)如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为(  )
分析:连接AO并延长,与圆O交于P点,当AF垂直于ED时,线段DE长最大,设圆O与AB相切于点M,连接OM,PD,由对称性得到AF为角平分线,得到∠FAD为30度,根据切线的性质得到OM垂直于AD,在直角三角形AOM中,利用30度角所对的直角边等于斜边的一半求出AO的长,由AO+OP求出AP的长,即为圆P的半径,由三角形AED为等边三角形,得到DP为角平分线,在直角三角形PFD中,利用30度所对的直角边等于斜边的一半求出PF的长,再利用勾股定理求出FD的长,由DE=2FD求出DE的长,即为DE的最大值.
解答:解:连接AO并延长,与ED交于F点,与圆O交于P点,此时线段ED最大,
连接OM,PD,可得F为ED的中点,
∵∠BAC=60°,AE=AD,
∴△AED为等边三角形,
∴AF为角平分线,即∠FAD=30°,
在Rt△AOM中,OM=1,∠OAM=30°,
∴OA=2,
∴PD=PA=AO+OP=3,
在Rt△PDF中,∠FDP=30°,PD=3,
∴PF=
3
2

根据勾股定理得:FD=
PD2-PF2
=
3
3
2

则DE=2FD=3
3

故选D
点评:此题考查了切线的性质,等边三角形的判定与性质,勾股定理,含30度直角三角形的性质,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•武汉模拟)如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A落在BC边上,落点为E,折痕交AB边交于点F;若BE:EC=m:n,则AF:FB=
m+n
n
m+n
n
(用含有m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)化简:(
a
a-b
-
b2
a2-ab
)÷
a2+2ab+b2
a
,当b=-2时,请你为a选择一个适当的值并代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)若x1,x2是一元二次方程x2-4x+3=0的两个根,则x1+x2的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)已知x1、x2是方程x2-
5
x+l=O的两根,则x1+x2的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)如图,在⊙O中,半径OA⊥弦BC,∠AOB=50°,则圆周角∠ADC=
25°
25°

查看答案和解析>>

同步练习册答案