精英家教网 > 初中数学 > 题目详情

已知四边形的一个外角等于与它不相邻的三个内角之和的,求这个外角的度数.

答案:60°
解析:

设这个外角的度数为x,则与它不相邻的三个内角之和为360°-(180°-x)=180°+x.依题意有


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•响水县一模)探究与发现:
探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?

已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.
探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.
探究三:若将△ADC改为任意四边形ABCD呢?
已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.
探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?
请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:
∠P=
1
2
(∠A+∠B+∠E+∠F)-180°
∠P=
1
2
(∠A+∠B+∠E+∠F)-180°

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•新疆)已知如图,∠EAD是圆内接四边形ABCD的一个外角,则(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

我们学过圆内接三角形,同样,四个顶点在圆上的四边形是圆内接四边形,下面我们来研究它的性质.
(I)如图(1),连接AO、OC,则有∠B=
1
2
∠1
∠D=
1
2
∠2
.∵∠1+∠2=360°∴∠B+∠D=
1
2
×360°=180°
,同理∠BAD+∠BCD=180°,即圆内接四边形对角(相对的两个角)互补.
(II)在图(2)中,∠ECD是圆内接四边形ABCD的一个外角,请你探究外角∠DCE与它的相邻内角的对角(简称内对角)∠A的关系,并证明∠DCE与∠A的关系.
(III)应用:请你应用上述性质解答下题:如图(3)已知ABCD是圆内接四边形,F、E分别为BD、AD延长线上的点,如果DE平分
∠FDC,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠EAD是圆内接四边形ABCD的一个外角,并且BD=DC.
求证:AD平分∠EAC.

查看答案和解析>>

同步练习册答案