分析 (1)根据平移的法则即可得出点C的坐标,设直线l1的解析式为y=kx+c,根据点B、C的坐标利用待定系数法即可求出直线l1的解析式;
(2)由点B的坐标利用待定系数法即可求出直线l2的解析式,再根据一次函数图象上点的坐标特征求出点A、E,根据三角形的面积公式即可求出△ABE的面积.
解答 解:(1)由平移法则得:C点坐标为(-3+1,3-2),即(-2,1).
设直线l1的解析式为y=kx+c,
则$\left\{\begin{array}{l}{3=-3k+c}\\{1=-2k+c}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=-2}\\{c=-3}\end{array}\right.$,
∴直线l1的解析式为y=-2x-3.
(2)把B点坐标代入y=x+b得,
3=-3+b,解得:b=6,
∴y=x+6.
当x=0时,y=6,
∴点E的坐标为(0,6).
当x=0时,y=-3,
∴点A坐标为(0,-3),
∴AE=6+3=9,
∴△ABE的面积为$\frac{1}{2}$×9×|-3|=$\frac{27}{2}$.
点评 本题考查了待定系数法求一次函数解析式、坐标与图形变化中的平移以及三角形的面积,根据点的坐标利用待定系数法求出函数解析式是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com