精英家教网 > 初中数学 > 题目详情
14.如图,在平面直角坐标系中,一次函数y1=kx+b的图象分别交x轴,y轴于A、B两点,与反比例函数y2=$\frac{n}{x}$的图象交于C、D两点,已知点C的坐标为(-4,-1),点D的横坐标为2.
(1)求反比例函数与一次函数的解析式;
(2)直接写出当x为何值时,y1>y2
(3)点P是反比例函数在第一象限的图象上的点,且点P的横坐标大于2,过点P做x轴的垂线,垂足为点E,当△APE的面积为3时,求点P的坐标.

分析 (1)由点C的坐标求出N的值,得出反比例函数解析式;求出点D的坐标,由待定系数法求出一次函数解析式即可;
(2)由两个函数图象即可得出答案;
(3)求出点A的坐标,由三角形面积求出m的值,即可得出点P的坐标.

解答 解:(1)把,C(-4,-1)代入y2=$\frac{n}{x}$,得n=4,
∴y2=$\frac{4}{x}$;
∵点D的横坐标为2,
∴点D的坐标为(2,2),
把C(-4,-1)和D(2,2)代入y1=kx+b得,$\left\{\begin{array}{l}{-4k+b=-1}\\{2k+b=2}\end{array}\right.$
解得:$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=1}\end{array}\right.$,
∴一次函数解析式为y1=$\frac{1}{2}$x+1.
(2)根据图象得:-4<x<0或x>2;
(3)当y1=0时,$\frac{1}{2}$x+1=0,
解得:x=-2,
∴点A的坐标为(-2,0),
如图,设点P的坐标为(m,$\frac{4}{m}$),
∵△APE的面积为3,
∴$\frac{1}{2}$(m+2)•$\frac{4}{m}$=3,
解得:m=4,
∴$\frac{4}{m}$=1,
∴点P的坐标为(4,1).

点评 本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式、三角形的面积,熟练掌握待定系数法求函数解析式是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.如图所示,下列说法正确的是(  )
A.∠1和∠2是内错角B.∠1和∠5是同位角
C.∠1和∠2是同旁内角D.∠1和∠4是内错角

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时血液中含药量为每毫升3微克,每毫升血液中含药量y微克随时间x小时主变化如图所示,当成人按规定剂是服药后,
(1)分别求出x<2和x>2时y与x的函数关系式,
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,抛物线y=ax2+bx+c(a<0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(3,0)在该抛物线上,则a-b+c的值为0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a-b+c≥0;  ④$\frac{a+b+c}{b-a}$的最小值为3.其中正确的是(  )
A.①②③B.②③④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.
(1)写出加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系式;
(2)途中加油多少升?
(3)汽车加油后还可行驶多少小时?
(4)汽车到达乙地时油箱中还余油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某服装店销售A、B两种品牌服装,且平均每月销售80件,已知这两种品牌服装的成本和售价如下表所示:
AB
成本(万元/件)10080
售价(万元/件)170120
设该服装店每月销售的A品牌服装x件,平均每月获得的总利润为y元.
(1)写出y与x的函数关系式;
(2)如果该服装店平均每月投入的总成本不超过7500元,不考虑其他因素,那么当A、B两种品牌服装各销售多少件时,该服装店平均每月的总利润最大?并求出这个最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,AB=BC,∠CAB=30°,AC=8,半径为2的⊙O从点A开始(如图1)沿直线AB向右滚动,滚动时始终与直线AB相切(切点为D),当⊙O与△ABC只有一个公共点时滚动停止,作OG⊥AC于点G.
(1)图1中,⊙O在AC边上截得的弦长AE=2;
(2)当圆心落在AC上时,如图2,判断BC与⊙O的位置关系,并说明理由.
(3)在⊙O滚动过程中,线段OG的长度随之变化,设AD=x,OG=y,求出y与x的函数关系式,并直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.2016年3月,我校举办了以“读城记”为主题的校读书节暨文化艺术节,为了解初中学生更喜欢下列A、B、C、D哪个比赛,从初中学生随机抽取了部分学生进行调查,每个参与调查的学生只选择最喜欢的一个项目,并把调查结果绘制了两幅不完整的统计图,请回答下列问题:
A.“寻找星主播”校园主持人大赛
B.“育才音超”校园歌手大赛
C.阅读之星评选
D.“超级演说家”演讲比赛
(1)这次被调查的学生共有200人.请你将统计图补充完整.
(2)在此调查汇总,抽到了七年级(1)班3人.其中2人喜欢“育才音超”校园歌手大赛、1人喜欢阅读之星评选.抽到八年级(5)班2人,其中1人喜欢“超级演说家”演讲比赛、1人喜欢阅读之星评选.从这5人中随机选两人.用列表或用树状图求出两人都喜欢阅读之星评选的概率.

查看答案和解析>>

同步练习册答案