【题目】“六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.
请根据上述统计图,解答下列问题:
(1)该校有多少个班级?并补全条形统计图.
(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?
(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
【答案】(1)该校有16个班级;(2)该校平均每班有9名留守儿童,留守儿童人数的众数是10名;(3)估计该镇小学生中共有540名留守儿童.
【解析】
(1)根据有7名留守儿童班级有2个,所占的百分比是12.5%,即可求得班级的总个数;
(2)利用平均数的计算公式求得每班的留守儿童数,然后根据众数的定义,就是出现次数最多的数确定留守儿童的众数;
(3)利用班级数60乘以(2)中求得的平均数即可.
(1)该校的班级数是:2÷12.5%=16(个).
则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).
;
(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+12×2)=9(人),众数是10名;
(3)该镇小学生中,共有留守儿童:60×9=540(人).
答:该镇小学生中共有留守儿童540人.
科目:初中数学 来源: 题型:
【题目】在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是( )
A. 30 B. 36 C. 72 D. 125
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:
(1)这次活动一共调查了名学生;
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11分)阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 41 51 36 44 46 40 53 37 47 45 46
(1)前10株西红柿秧上小西红柿个数的平均数是 ,中位数是 ,众数是 ;
(2)若对这20个数按组距8进行分组,请补全频数分布表及频数分布直方图:
个数分组 | 28≤x<36 | 36≤x<44 | 44≤x<52 | 52≤x<60 | 60≤x<68 |
频数 | 2 | 2 |
(3)通过频数分布直方图试分析此大棚中西红柿的长势。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接新中国成立六十周年,某中学九年级组织了《祖国在我心》征文比赛,共收到一班、二班、三班、四班参赛学生的文章共100篇(参赛学生每人只交一篇),下面扇形统计图描述了各班参赛学生占总人数的百分比情况(尚不完整).比赛一、二等奖若干,结果全年级25人获奖,其中三班参赛学生的获奖率为20%,一、二、三、四班获奖人数的比为6∶7∶a∶5.
(1)填空:①四班有______人参赛,α=______°.
②a=______,各班获奖学生数的众数是______.
(2)获一等奖、二等奖的学生每人分别得到价值100元、60元的学习用品,购买这批奖品共用去1900元,问一等奖、二等奖的学生人数分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE
(1)请判断:AF与BE的数量关系是 , 位置关系是 .
(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】公园内两条小河MO、NO在O处汇合,如图所示,两河形成的平地上要建一个小百货店,使小百货店到两岸边距离相等,到两河交汇处距离300米,百货店的位置该怎样确定?请你按10000:1的比例,在图中确定百货店的位置,并估算一下,它到河边的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.
(1)求证: = ;
(2)求证:AF⊥FM;
(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF= .
(1)求证:四边形ABDE是平行四边形;
(2)求AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com