精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC(AB>AE).

(1)△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由;
(2)设=k,是否存在这样的k值,使得△AEF与△BFC相似,若存在,证明你的结论并求出k的值;若不存在,说明理由.
如图,是相似.                       
【证明】延长FE,与CD的延长线交于点G.

在Rt△AEF与Rt△DEG中,
∵ E是AD的中点,
∴ AE=ED.
∵ ∠AEF=∠DEG,
∴ △AFE≌△DGE.                         
∴ ∠AFE=∠DGE.
∴ E为FG的中点.
又 CE⊥FG,
∴ FC=GC.
∴ ∠CFE=∠G.
∴ ∠AFE=∠EFC.
又 △AEF与△EFC均为直角三角形,
∴ △AEF∽△EFC.                         
① 存在.                                    
如果∠BCF=∠AEF,即k=时,△AEF∽△BCF.
证明:当时,
∴ ∠ECG=30°.
∴ ∠ECG=∠ECF=∠AEF=30°.
∴ ∠BCF=90°-60°=30°.
又 △AEF和△BCF均为直角三角形,
∴ △AEF∽△BCF.           
② 因为EF不平行于BC,
∴ ∠BCF≠∠AFE.
∴ 不存在第二种相似情况.          
(1)要求两三角形相似,已知条件有一组直角,我们只需再证得一组对应角相等即可得出两三角形相似,根据FE⊥EC,因此∠AEF和∠DCE都是∠DEC的余角,因此∠AEF=∠DCE,我们只要再得出∠DCE=∠FCE即可,可通过构建全等三角形来求解,延长FE交CD于G,我们不难得出△AEF和△GED全等,那么EF=EG,再根据一组直角和一条公共边我们可得出△FEC和△GEC全等,即可得出∠FCE=∠GCE也就得出了∠AEF=∠ECF,于是就凑齐了两三角形相似的条件;
(2)要想使两三角形相似,已知的条件有一组直角,那么分两种情况进行讨论:
当∠AFE=∠FCB时,那么∠AFE就和∠BFC互余,因此∠EFC就是直角,而∠FEC也是直角因此这种情况是不成立的;
当∠AEF=∠FCB时,AE:BC=AF:BF,那么由于E是AD中点,因此BC=2AE,所以我们可得出BF=2AF,即AB=3AF,又根据(1)中AF=GD,AB=CD,我们可在△CEG中根据△EGD和△EDC相似,得出关于GD、ED、DC的比例关系,也就是AF、AB、AE的比例关系,有了AB=3AF,就能求出ED与AF的比例关系,也就求出了BC与AF的比例关系,以AF为中间值即可得出AB与BC的比例关系,也就求出了k的值
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足

(1)求点,点的坐标.
(2)若点点出发,以每秒1个单位的速度沿射线运动,连结.设的面积为,点的运动时间为秒,求的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AD∥BC,∠D=900,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线l1//l2,AF:FB=2:3,BC:CD=2:1,则AE:EC是        .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).

(1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.
(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△OAB中,O为坐标原点,横、纵轴的单位长度相同,A、B的坐标分别为(8,6),(16,0),点P沿OA边从点O开始向终点A运动,速度每秒1个单位,点Q沿BO边从B点开始向终点O运动,速度每秒2个单位,如果P、Q同时出发,用t(秒)表示移动时间,当这两点中有一点到达自己的终点时,另一点也停止运动。

求(1)几秒时PQ∥AB
(2)设△OPQ的面积为y,求y与t的函数关系式
(3)△OPQ与△OAB能否相似,若能,求出点P的坐标,若不能,试说明理由

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,菱形ABCD中,CF⊥AD,垂足为E,交BD的延长线于F.求证:AO2=BO•OF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一油桶高0.8米,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m,则桶内油的高度为______。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题是真命题的是                                             (  )
A.相等的角是对顶角  B.两直线被第三条直线所截,内错角相等
C.若 D.有一角对应相等的两个菱形相似.

查看答案和解析>>

同步练习册答案