精英家教网 > 初中数学 > 题目详情

已知,在△ABC中,AB=AC,D是BC边的中点,P是AD上任意一点,PE⊥AB于E,PF⊥AC于F.试说明:(1)PE=PF;(2)PB=PC.

证明:(1)∵AB=AC,D是BC边的中点,
∴AD平分∠BAC,
又∵PE⊥AB于E,PF⊥AC于F,
∴PE=PF;

(2)∵AB=AC,D是BC边的中点,
∴AD垂直BC,
即AD垂直平分BC,
又∵P是AD上任意一点,
∴PB=PC.
分析:(1)首先根据等腰三角形的顶角平分线与底边上的中线相互重合,得出AD平分∠BAC,然后根据角平分线上的点到角的两边的距离相等,即可证出PE=PF;
(2)首先根据等腰三角形“三线合一”的性质得出AD是BC的垂直平分线,然后根据线段垂直平分线的性质即可证出PB=PC.
点评:本题主要考查了等腰三角形“三线合一”的性质、角平分线的性质及线段垂直平分线的性质.属于基础知识,学生应熟练掌握.本题如果运用全等三角形的判定和性质做,就稍显麻烦.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案