精英家教网 > 初中数学 > 题目详情
已知:在△ABC中,AB=BC,∠ABC=45°,BD⊥AC于D,CE⊥AB于E,CE与BD相交于F,EH⊥BC于H,EH与BD相交于G.
(1)求∠ECB的度数;
(2)求证:△AEC≌△FEB;
(2)求证:BF=2CD;
(3)探究EG与EF的大小关系,并给予证明.
分析:(1)根据直角三角形的性质可得∠ECB的度数;
(2)利用AAS判定Rt△EFB≌Rt△EACL;
(3)利用等腰三角形三线合一的性质,结合全等三角形的性质即可证明BF=2CD;
(4)通过证明△EGF的两底角相等可得EG与EF的大小关系.
解答:解:(1)∵∠ABC=45°,CE⊥AB于E,
∴∠ECB=90°-45°=45°;

(2)∵CE⊥AB,∠ABC=45°,
∴△BCE是等腰直角三角形.
∴BE=CE.
在Rt△EFB和Rt△EAC中,
∵∠EBF=90°-∠BFE,∠ECA=90°-∠DFC,且∠BFE=∠DFC,
∴∠EBF=∠ECA.
又∵∠BEF=∠CEA=90°,BE=CE,
∴Rt△EFB≌Rt△EAC;

(3)∵Rt△EFB≌Rt△EAC,
∴BF=AC,
∵AB=BC,BD⊥AC,
∴AC=2CD,
∴BF=2CD;

(4)∵∠EGF=∠EBG+∠BEH,∠EFG=∠ECB+∠FBC,
又∵∠ABC=∠ECB=45°,∠ABD=∠CBD,
∴∠EGF=∠EFG,
∴EG=EF.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案