【题目】已知:如图,E、F是平行四边行ABCD的对角线AC上的 两点,AE=CF。
求证:(1)△ADF≌△CBE
(2)EB∥DF.
【答案】∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC. ………………(1分)
∴∠DAC=∠BCE.
又∵AE=CF,∴AF=CE
∴△ADF≌△CBE.……………………(4分)
∴∠AFD=∠CEB.
∴BE∥DF. ……………………………(6分
【解析】试题分析:要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB.
证明:(1)∵AE=CF,
∴AE+EF=CF+FE,即AF=CE.
又ABCD是平行四边形,
∴AD=CB,AD∥BC.
∴∠DAF=∠BCE.
在△ADF与△CBE中,
∴△ADF≌△CBE(SAS).
(2)∵△ADF≌△CBE,
∴∠DFA=∠BEC.
∴DF∥EB.
科目:初中数学 来源: 题型:
【题目】小红随机调查了50名九年级同学某次知识问卷的得分情况,结果如下表:
问卷得分(单位:分) | 65 | 70 | 75 | 80 | 85 |
人数(单位:人) | 1 | 15 | 15 | 16 | 3 |
则这50名同学问卷得分的众数和中位数分别是 ( )
A. 16,75 B. 80,75 C. 75,80 D. 16,15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了抓住市文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,
B种纪念品6件,需要800元.
(1)求购进A,B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法不正确的有( )个
①从直线外一点到这条直线的垂线段,叫做点到直线的距离②内错角相等,③过一点有且只有一条直线与已知直线垂直④相等的角是对顶角
A. 0 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,若平移二次函数y=(x﹣6)(x﹣7)﹣3的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为( )
A. 向左平移3个单位 B. 向右平移3个单位
C. 向上平移3个单位 D. 向下平移3个单位
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( ).
A. 一个数不是正数就是负数 B. 绝对值最小的数是0
C. 立方等于本身的数是1或-1 D. 倒数等于本身的数是1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com