分析 作DH⊥AC垂足为H与AG交于点E,点H关于AG的对称点为F,此时EF+ED最小=DH,先证明△ADC是等边三角形,在RT△DCH中利用勾股定理即可解决问题.
解答 解:如图作DH⊥AC垂足为H与AG交于点E,
∵四边形ABCD是菱形,
∵AB=AD=CD=BC=6,
∵∠B=60°,![]()
∴∠ADC=∠B=60°,
∴△ADC是等边三角形,
∵AG是中线,
∴∠GAD=∠GAC
∴点H关于AG的对称点F在AD上,此时EF+ED最小=DH.
在RT△DHC中,∵∠DHC=90°,DC=6,∠CDH=$\frac{1}{2}$∠ADC=30°,
∴CH=$\frac{1}{2}$DC=3,DH=$\sqrt{C{D}^{2}-C{H}^{2}}$=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$,
∴EF+DE的最小值=DH=3$\sqrt{3}$
故答案为3$\sqrt{3}$.
点评 本题考查菱形的性质、垂线段最短、等边三角形的判定、勾股定理等知识,解决问题的关键是利用垂线段最短解决最小值问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
| A. | (1+x)(x+1) | B. | (2a+b)(b-2a) | C. | (-a+b)(a-b) | D. | (x2-y)(y2+x) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 35° | B. | 30° | C. | 25° | D. | 20° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com