阅读理解:
在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:
①当x<2时,原方程可化为-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②当x≥2时,原方程可化为3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解为:x=0,x=4.
解题回顾:本题中2为x-2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.
知识迁移:
(1)运用整体思想先求|x-3|的值,再去绝对值符号的方法解方程:|x-3|+8=3|x-3|;
知识应用:
(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2-x|-3|x+1|=x-9.
提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?
解:(1)移项得|x-3|-3|x-3|=-8,
合并得-2|x-3|=-8,
两边除以-2得|x-3|=4,
所以x-3=±4,
∴x=-1或7;
(2)当x≤-1,原方程可化为2-x+3(x+1)=x-9,解得x=-14,符合x≤-1;
当-1<x≤2,原方程可化为2-x-3(x+1)=x-9,解得x=
,符合-1<x≤2;
当x>2,原方程可化为-2+x+3(x+1)=x-9,解得x=-
,不符合x>2;
∴原方程的解为x=-14或x=
.
分析:(1)先把|x-3|-3|x-3|=-8看作是关于|x-3|的一元一次方程,可解得|x-3|=4,再去绝对值得到x-3=±4,然后解两个一元一次方程即可;
(2)2-x的零点为2,x+1的零点为-1,这样分三个区间进行讨论:当x≤-1;当-1<x≤2;当-1<x≤2;在各区间分别去绝对值化为一元一次方程,解方程,然后得到满足条件的x的值.
点评:本题考查了含绝对值符号的一元一次方程:运用分类讨论的方法把含绝对值的一元一次方程化为一元一次方程求解或运用整体思想求解.