精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=8cm,BC=6cm,动点P从点A出发,以每秒1cm的速度沿线段AB向点B运动,连接DP,把∠A沿DP折叠,使点A落在点A′处.求出当△BPA′为直角三角形时,点P运动的时间.

【答案】答案见解析

【解析】整体分析:

因为不确定△BPA′的哪一个角是直角,所以需要分三种情况讨论,即(1)当∠BAP=90°时;(2)当∠APB=90°;(3)当∠ABP=90°注意画出符合各种情况的图形,找出折叠后相等的边和角.

:(1)当∠BAP=90°时,由折叠得,∠PAD=∠A=90°,

∴∠BAD=∠BAP+∠PAD=180°,

∴点B、A、D在一直线上,

Rt△ABD中,AD=6,AB=8,由勾股定理得BD=10.

AP=xcm,

∴AP=x,BP=8-x,AB=10-6=4,

Rt△APB中,x2+42=(8-x)2

解得x=3.

∴点P运动的时间为3÷1=3.

(2)∠A′PB=90°时,∠A′PA=90°,

∵∠DA′P=90°,∴四边形APAD是矩形

∴A′P=AP,∴四边形APA′D是正方形,∴AP=AD=6,

P运动的时间为6÷1=6.

(3)∠A′BP=90°时,不存在.

综上所述,点P的运动时间为3s6s.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=2 ,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校计划购买A、B两种品牌的显示器共120台,A、B两种品牌显示器的单价分别为800元和1000元,设购买A品牌显示器x台,若学校购买这两种品牌显示器的总费用为110000元,那么A、B两种品牌的显示器各购买了多少台?根据题目信息完成上面的表格,并列出方程,列出的方程:   

项目品牌

单价/

购买数量/

购买费用/

A

800

x

  

B

1000

  

  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( 1 +tan60°+|3﹣2 |.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(1,2),B(3,2),连接AB,点P是x轴上的一个动点,连接AP、BP,当△ABP的周长最小时,对应的点P的坐标和△ABP的最小周长分别为( )

A. (1,0), B. (3,0), C. (2,0), D. (2,0),

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整2h后提速行驶至乙地.设行驶时间为x( h),货车的路程为y1( km),小轿车的路程为y2( km ),图中的线段OA与折线OBCD分别表示y1,y2x之间的函数关系.

(1)甲乙两地相距_____km,m=_____

(2)求线段CD所在直线的函数表达式;

(3)小轿车停车休整后还要提速行驶多少小时,与货车之间相距20km?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.

(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案