精英家教网 > 初中数学 > 题目详情

如图,已知:正方形ABCD中,E在CD上,AF⊥AE,交CB延长线于点F.求证:△ABF≌△ADE.

解:∵AF⊥AE,
∴∠BAF+∠BAE=90°,
又∵∠DAE+∠BAE=90°,
∴∠BAF=∠DAE,
∵四边形ABCD是正方形,
∴AB=AD,∠ABF=∠ADE=90°,
在△ABF和△ADE中,

∴△ABF≌△ADE(ASA).
分析:根据等角的余角相等可得∠BAF=∠DAE,再由正方形的性质可得AB=AD,∠ABF=∠ADE,利用ASA即可判断两三角形的全等.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在正方形ABCD中,P为BC上的一点,E是边BC延长线上一点,连接AP过点P作PF⊥精英家教网AP,与∠DCE的平分线CF,相交于点F,连接AF,与边CD相交于点G,连接PG.
(1)求证:①∠PAB=∠FPC;②AP=FP;
(2)试判断PB、DG、PC,这三条线段存在怎样的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,已知在正方形ABCD中,P是BC上的一点,且AP=DP.求证:P是BC中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林模拟)如图,已知,正方形ABCD的边长为1,以BC为对角线作第一个正方形BECO1,再以BE边为对角线作第二个正方形EFBO2,如此作下去,…则所作的第n正方形的面积Sn=
1
2n
1
2n

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•仓山区模拟)如图,已知在正方形ABCD网格中,每个小方格都是边长为1的正方形,E是边DC上的一个网格的格点.
(1)
DE
EB
的值是
1
5
1
5

(2)按要求画图:在BC边长找出格点F,连接AF,使AF⊥BE;
(3)在(2)的条件下,连接EF,求cos∠AFE的值.(结果保留根式)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•郑州模拟)如图,已知在正方形ABCD中,EF分别是AB,BC上的点,若有AE+CF=EF,请你猜想∠EDF的度数,并说明理由.

查看答案和解析>>

同步练习册答案