如图,在△ABC中,AD是BC上的高,
,
![]()
(1) 求证:AC=BD;
(2)若
,BC=12,求AD的长.
(1)证明见解析(2)8
【解析】(1)∵AD是BC上的高,∴AD⊥BC.
∴∠ADB=90°,∠ADC=90°. …………………………………………1分
在Rt△ABD和Rt△ADC中,
∵
=
,
=
…………………………………………3分
又已知![]()
∴
=
.∴AC=BD.
………………………………4分
(2)在Rt△ADC中,
,故可设AD=12k,AC=13k.
∴CD=
=5k.
………………………………5分
∵BC=BD+CD,又AC=BD,
∴BC=13k+5k=18k ………………………………6分
由已知BC=12, ∴18k=12.∴k=
. ………………………………7分
∴AD=12k=12
=8.
……………………………8分
(1)在直角三角形中,表示
,根据它们相等,即可得出结论
(2)利用
和勾股定理表示出线段长,根据
,求出
长
科目:初中数学 来源: 题型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com