精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为

【答案】
【解析】解:连接OC,
∵过点C的切线交AB的延长线于点D,
∴OC⊥CD,
∴∠OCD=90°,
即∠D+∠COD=90°,
∵AO=CO,
∴∠A=∠ACO,
∴∠COD=2∠A,
∵∠A=∠D,
∴∠COD=2∠D,
∴3∠D=90°,
∴∠D=30°,
∴∠COD=60°
∵CD=3,
∴OC=3× = ,∴阴影部分的面积= ×3× = ,故答案为:

连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.本题主要考查切线的性质及扇形面积的计算,掌握过切点的半径与切线垂直是解题的关键.求出∠D=30°是解题的突破口.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某食品厂从生产的袋装食品中抽出样品 20 袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:

①这批样品的平均质量比标准质量多还是少?用你学过的方法合理解释;

②若标准质量为 450 克,则抽样检测的总质量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、BOC

(1)求∠DOE的度数;

(2)如图2,在∠AOD内引一条射线OF,使∠COF=,其他不变,设∠DOF=

①求∠AOF的度数(用含的代数式表示).

②若∠BOD是∠AOF2倍,求∠DOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,ACB90°,点DE分别在ABAC上,CEBC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.

(1)补充完成图形;

(2)EFCD,求证:BDC90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC中

(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;

(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.

①依题意将图2补全;

②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

想法1:要证明PA=PM,只需证△APM是等边三角形;

想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;

想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…

请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.

次数

70≤x<90

90≤x<110

110≤x<130

130≤x<150

150≤x<170

人数

8

23

16

2

1

根据所给信息,回答下列问题:

(1)本次调查的样本容量是
(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有人;
(3)根据上表的数据补全直方图;
(4)如果跳绳次数达到130次以上的3人中有2名女生和一名男生,学校从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率(要求用列表法或树状图写出分析过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算:(﹣1)2014﹣|﹣ |+ ﹣( ﹣π)0
(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有_______个.

查看答案和解析>>

同步练习册答案