精英家教网 > 初中数学 > 题目详情

【题目】如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF=

【答案】a
【解析】解:如图,连接OB、OC.

∵AD是直径,AB=BC=CD,
= =
∴∠AOB=∠BOC=∠COD=60°,
∴∠APB= ∠AOB=30°,∠APC= ∠AOC=60°,
在Rt△APE中,∵∠AEP=90°,
∴AE=APsin30°= a,
在Rt△APF中,∵∠AFP=90°,
∴AF=APsin60°= a,
∴AE+AF= a.
所以答案是 a.
【考点精析】关于本题考查的勾股定理的概念和圆周角定理,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,AB=AC,C=70°,AB′C′ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是(  )
A.线段DB绕点D顺时针旋转一定能与线段DC重合
B.线段DB绕点D顺时针旋转一定能与线段DI重合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点Aa0)和B0b)满足,分别过点ABx轴、y轴的垂线交于点C,如图,点P从原点出发,以每秒2个单位长度的速度沿着O-B-C-A-O的路线移动.

1)写出ABC三点的坐标;

2)当点P移动了6秒时,描出此时P点的位置,并写出点P的位置坐标;

3)连结(2)中BP两点,将线段BP向下平移h个单位(h0),得到BP′,若BP′将四边形OACB的周长分成相等的两部分,求h的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,在平面直角坐标系中,A(3,4),B(0,2).

(1)OAB绕O点旋转180°得到OA1B1,请画出OA1B1,并写出A1,B1的坐标;

(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线L:y=-x+2x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点MA点以每秒1个单位的速度沿x轴向左移动.

(1)求A、B两点的坐标;

(2)△COM的面积SM的移动时间t之间的函数关系式;

(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.
(1)直接写出AE与BC的位置关系;
(2)求证:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两张半径均为10的半圆形的纸片完全重合叠放一起,上面这张纸片绕着直径的一端B顺时针旋转30°后得到如图所示的图形, 与直径AB交于点C,连接点C与圆心O′.

(1)求 的长;
(2)求图中下面这张半圆形纸片未被上面这张纸片重叠部分的面积S

查看答案和解析>>

同步练习册答案