精英家教网 > 初中数学 > 题目详情
如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.

(1)求证:点F是AD的中点;
(2)求cos∠AED的值;
(3)如果BD=10,求半径CD的长.
(1)证明见解析;(2);(3)5.

试题分析:(1)欲证点F是AD的中点,只须证AF=DF,可以证明△AEF≌△DEF得出;
(2)求∠AED的余弦值,即求ME:DM,由已知条件,勾股定理,切割线定理的推论可以求出;
(3)根据△AEC∽△BEA易得AE2=CE•BE,因此(5k)2=k•(10+5k),解得k=2,所以CD=k=5.
试题解析:(1)证明:∵AD是△ABC的角平分线,
∴∠1=∠2,
∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,
∴∠ADE=∠DAE,
∴ED=EA,
∵ED为⊙O直径,
∴∠DFE=90°,
∴EF⊥AD,
∴点F是AD的中点;
(2)解:连接DM,
设EF=4k,DF=3k,

则ED=
AD•EF=AE•DM,
∴DM=
∴ME=
∴cos∠AED=
(3)∵∠B=∠3,∠AEC为公共角,
∴△AEC∽△BEA,
∴AE:BE=CE:AE,
∴AE2=CE•BE,
∴(5k)2=k•(10+5k),
∵k>0,
∴k=2,
∴CD=k=5.
考点: 1.圆周角定理;2.相似三角形的判定与性质;3.锐角三角函数的定义.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,CD⊥AB,垂足为D,AC=20,BC=15.动点P从A开始,以每秒2个单位长的速度沿AB方向向终点B运动,过点P分别作AC、BC边的垂线,垂足为E、F.

(1)求AB与CD的长;
(2)当矩形PECF的面积最大时,求点P运动的时间t;
(3)以点C为圆心,r为半径画圆,若圆C与斜边AB有且只有一个公共点时,求r的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若正六边形的边长为2,则此正六边形的边心距为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).

(1)画出△AOB绕点O逆时针旋转90°后得到的△A1OB1
(2)填空:点A1的坐标为               .
(3)求出在旋转过程中,线段OB扫过的扇形面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为(    )
A.48cm2B.48πcm2C.60πcm2D.120πcm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,C是⊙O上一点,O为圆心,若∠C=40°,则∠AOB为(  )
A.20°B.40°C.80°D.160°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直径分别为CD.CE的两个半圆相切于点C,大半圆M的弦与小半圆N相切于点F,且AB∥CD,AB=10,设弧CD.弧CE的长分别为.,线段ED的长为,则的值为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为(  )
A.3cmB.4cmC.5cm D.6cm

查看答案和解析>>

同步练习册答案