精英家教网 > 初中数学 > 题目详情
如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为多少?

试题分析:由于A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值.
试题解析:连接OA,OB,OC,作CH垂直于AB于H.

∵AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,
∴BE=AB=4,CF=CD=3,
∴OE=,OF=
∴CH=OE+OF=3+4=7,
BH=BE+EH=BE+CF=4+3=7,
在Rt△BCH中根据勾股定理得到BC=
即PA+PC的最小值为.
考点: 1.轴对称-最短路线问题;2.勾股定理;3.垂径定理.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图是庐江中学某景点内的一个拱门,它是⊙O的一部分.已知拱门的地面宽度CD=2m,它的最大高度EM=3m,求构成该拱门的⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E,CE=,CD=2.

(1)求直径BC的长;
(2)求弦AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;
(2)若CD=2AD,⊙O的直径为10,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.

(1)求证:点F是AD的中点;
(2)求cos∠AED的值;
(3)如果BD=10,求半径CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

半径分别为2和3的两个圆有两个公共点,那么这两个圆的圆心距d满足       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

.如图,在中,的内切圆,点斜边的中点,则       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在中, ∠C=90°,分别以A、B为圆心,2为半径画圆,则图中阴影部分的面积和为    (     )

A.3π   B.2π   C.π     D.

查看答案和解析>>

同步练习册答案