精英家教网 > 初中数学 > 题目详情
11.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,PF∥BC交AB于F,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长始终保持不变,试求出ED的长度.

分析 (1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6-x,QB=x,在Rt△QCP中,∠BQD=30°,PC=$\frac{1}{2}$QC,即6-x=$\frac{1}{2}$(6+x),求出x的值即可;
(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=$\frac{1}{2}$AB,由等边△ABC的边长为6,可得出DE=3.

解答 解:(1)∵△ABC是边长为6的等边三角形,
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QPC=90°,
设AP=x,则PC=6-x,QB=x,
∴QC=QB+BC=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC=$\frac{1}{2}$QC,即6-x=$\frac{1}{2}$(6+x),解得x=2,
∴AP=2;

(2)作QG⊥AB,交直线AB于点G,连接QE,PG,
又∵PE⊥AB于E,
∴∠DGQ=∠AEP=90°,
∵点P、Q速度相同,
∴AP=BQ,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠GBQ=60°,
在△APE和△BQG中,
∵∠AEP=∠BGQ=90°,
∴∠APE=∠BQG,
$\left\{\begin{array}{l}{∠AEP=∠BGQ}\\{∠A=∠GBQ}\\{AP=BQ}\end{array}\right.$,
∴△APE≌△BQG(AAS),
∴AE=BG,PE=QG且PE∥QG,
∴四边形PEQG是平行四边形,
∴DE=$\frac{1}{2}$EG,
∵EB+AE=BE+BG=AB,
∴DE=$\frac{1}{2}$AB,
又∵等边△ABC的边长为6,
∴DE=3,
故运动过程中线段ED的长始终为3.

点评 本题主要考查了等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作辅助线构造出全等三角形是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,在△ABC中,∠ABC=2∠C,BE平分∠ABC,交AC于点E,过点E分别作ED⊥BC,EF⊥AB,分别交BC,AB于点D,F,若EF=6,BE=10,CD=8,则△CDE的周长为24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如果x+y=0,求x3+x2y+xy2+y3的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.父亲告诉小明:“距离地面越高,温度越低”,并给小明出示了下面的表格:
距离地面高度(千米)h012345
温度(℃)t201482-4-10
根据表中,父亲还给小明出了下面几个问题,你和小明一起回答.
(1)表中自变量是h;因变量是t;
当地面上(即h=0时)时,温度是20℃.
(2)如果用h表示距离地面的高度,用t表示温度,请写出满足h与t关系的式子.
(3)计算出距离地面6千米的高空温度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,A、B、D三点在同一直线上,EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8.
(1)试求点F到AD的距离.
(2)试求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a、b、c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a、b、c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).1cm表示1个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.微山湖自古就有“日出斗金”之美誉,助推着周边地区经济的发展,某公司加工生产了A、B、C三类湖产品,销售的重量及利润如表所示:
湖产品种类A类B类C类
每辆汽车装载吨数211.5
每吨湖产品可获利润(万元)574
该公司计划用26辆汽车装载三类湖产品(毎类湖产品至少一辆车,每辆汽车只装一类湖产品且装满)共48吨到某地销售.
(1)设装A类湖产品用x辆汽车,装B类湖产品用y辆汽车,装C类湖产品用z辆汽车.请用含z的式子表示x,y.
(2)如果本次销售公司获得利润为w万元,那么如何安排装运,可使w最大,最大是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为(  )
A.$\frac{1}{2}$cmB.1cmC.$\frac{3}{2}$cmD.2cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,直线l与直线a,b,c分别交于点A,B,C,a∥b,l⊥a,l⊥c,AB=2.
(1)填空:l与b的位置关系是l⊥b,c与b的位置关系是c∥b;
(2)已知M是直线a上点,N是直线c上点,D是直线b上点,且S△BDM=$\frac{2}{3}$S△BOM,求a,c间的距离.

查看答案和解析>>

同步练习册答案