【题目】已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?
(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.
【答案】(1)2或3秒;(2)不能.
【解析】
(1)设经过x秒钟,△PBQ的面积等于6cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解.
(2)通过判定得到的方程的根的判别式即可判定能否达到8cm2.
解:(1)设 经过x秒以后△PBQ面积为6cm2,则
×(5﹣x)×2x=6,
整理得:x2﹣5x+6=0,
解得:x=2或x=3.
答:2或3秒后△PBQ的面积等于6cm2 .
(2)设经过x秒以后△PBQ面积为8cm2,则
×(5﹣x)×2x=8,
整理得:x2﹣5x+8=0,
△=25﹣32=﹣7<0,
所以,此方程无解,
故△PQB的面积不能等于8cm2.
科目:初中数学 来源: 题型:
【题目】如图,为线段
上一动点(不与点
,
重合),在
同侧分别作等边
和等边
,
与
交于点
,
与
交于点
,
与
交于点
,连接
.下列五个结论:①
;②
;③
;④DE=DP;⑤
.其中正确结论的个数是( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一块形如四边形ABCD的草地中,AB=3m,BC=4m,CD=12m,DA=13m,且∠ABC=90°,要以AC、CD、DA为边制作围栏,问围栏长多少米,草地面积多大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,
是关于
的方程
的两实根,实数
、
、
、
的大小关系可能是( )
A. α<a<b<β B. a<α<β<b C. a<α<b<β D. α<a<β<b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017浙江省湖州市,第23题,10分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;
(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.
①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;
②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙俩射击运动员进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示.则甲、乙射击成绩的方差之间关系是
(填“<”,“=”,“>”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分别相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com