精英家教网 > 初中数学 > 题目详情

【题目】如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.

(1)如果AC=6cm,BC=8cm,试求△ACD的周长;

(2)如果∠CAD:∠BAD=1:2,求∠B的度数.

【答案】(1) 14cm;(2)36°

【解析】分析:(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;
(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.

详解:

(1)由折叠的性质可知,DE垂直平分线段AB,
根据垂直平分线的性质可得:DA=DB,
所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;

(2)设∠CAD=x,则∠BAD=2x,
∵DA=DB,
∴∠B=∠BAD=2x,
Rt△ABC中,∠B+∠BAC=90°,
即:2x+2x+x=90°,x=18°,
∠B=2x=36°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCDDCE的角平分线CG的反向延长线和ABE的角平分线BF交于点FEF36°,则E=(

A.82°B.84°C.97°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产一种新型生物医药产品,生产成本为2万元/ 吨,每月生产能力为12吨,且生产出的产品都能销售出去.这种产品部分内销,另一部分外销(出口),内销与外销的单价 (单位:万元/吨)与销量的关系分别如图1,图2.

(1)如果该公司内销数量为x(单位:吨),内、外销单价分别为y 1 , y 2 ,求, 关于x的函数解析式;
(2)如果该公司内销数量为x(单位:吨),求内销获得的毛利润 关于x的函数解析式;
(3)请设计一种销售方案,使该公司本月能获得最大毛利润,并求出毛利润的最大值.(毛利润=销售收入-生产成本).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因快手及抖音等新媒体的传播,衢州水亭门已成为最著名的旅游景点之一,2019年“十一”黄金周期间,接待游客已达万人次.衢州美食无数,一家特色小面店希望在长假期间获得较好的收益,经测算知,该小面的成本价为每碗元,借鉴以往经验:若每碗小面卖元,平均每天能够销售碗,若降价销售,每降低元,则平均每天能够多销售碗.为了维护城市形象,规定每碗小面的售价不得超过元,则当每碗小面的售价定为多少元时,店家才能实现每天盈利元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同)打乱顺序重新排列,从中任意抽取1张卡片.
(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;
(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;
(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征。其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表:

速度v(千米/小时)

5

10

20

32

40

48

流量q(辆/小时)

550

1000

1600

1792

1600

1152


(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只需填上正确答案的序号)①
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最大流量是多少?
(3)已知q,v,k满足 ,请结合(1)中选取的函数关系式继续解决下列问题:
①市交通运行监控平台显示,当 时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;
②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:的两条高交于点,点分别是的中点,连接

求证:垂直平分

.判断以为顶点的四边形的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形纸片中,上一点,将沿折叠,刚好使点落在对角线上的点处.

用尺规作图,在图上作出折叠线.以及点的对称点(不写作法,但要保留作图痕迹,)

的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)计算:F(243),F(617);
(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k= ,当F(s)+F(t)=18时,求k的最大值.

查看答案和解析>>

同步练习册答案