【题目】某公司生产一种新型生物医药产品,生产成本为2万元/ 吨,每月生产能力为12吨,且生产出的产品都能销售出去.这种产品部分内销,另一部分外销(出口),内销与外销的单价 (单位:万元/吨)与销量的关系分别如图1,图2.
(1)如果该公司内销数量为x(单位:吨),内、外销单价分别为y 1 , y 2 ,求, 关于x的函数解析式;
(2)如果该公司内销数量为x(单位:吨),求内销获得的毛利润 关于x的函数解析式;
(3)请设计一种销售方案,使该公司本月能获得最大毛利润,并求出毛利润的最大值.(毛利润=销售收入-生产成本).
【答案】
(1)解:由图1可得:当0≤x≤4时, y1=12,
当4<x≤12时,依题可设y1=kx+b,
由图1可知y1过(4,12),(12,4)两点,
∴,
∴,
∴ y1=x+16 ,
∴ y1=,
依题可设y2=cx+d,
由图2可知y2过(0,8),(12,6)两点,
∴,
∴,
∴y2=x+8(0x12),
(2)解:依题可得:
当 0≤x≤4 时, S1=(122)x=10x ;
当 4<x≤12 时, S1=(x+162)x=x2+14x;
∴S1=,
(3)解:设内销产品为x吨,则外销产品为(12-x)吨,外销毛利润为S2万元,总利润为W万元,
∵ S2=(12-x)【-(12-x)+8-2】,
当 0≤x≤4 时,
∴W=S1+S2=10x-x2-2x+48
=x2+8x+48,
=-x2-2x+48,
=-(x-24)2+144,
∵a=-,x24,
∴W随x的增大而增大,
∴当x=4时,W取得最大值,且Wmax=.
当 4x≤12 时,
W=S1+S2=x2+14x-x2-2x+48,
=x2+12x+48,
=-(x-)2+,
∵a=-,
∴当x=时,W取得最大值,且Wmax=.
∵ ,
综上所述:当x=时,W取得最大值,且Wmax=.
∴当安排内销吨,外销吨时,该公司本月可以获得最大毛利润万元.
【解析】(1)由图1可知分0≤x≤4和4<x≤12 两种情况,利用待定系数法即可求得y1解析式;由图2利用待定系数法即可求得y2解析式.
(2)根据毛利润=销售收入-生产成本,由(1)求出的解析式分0≤x≤4和4<x≤12 两种情况,即可求得.
(3)设内销产品为x吨,则外销产品为(12-x)吨,外销毛利润为S2万元,总利润为W万元,根据(2)中的关系式列出S2的解析式,再分0≤x≤4和4<x≤12 两种情况,由W=S1+S2求得二次函数解析式,依据二次函数的性质求出函数最值即可.
科目:初中数学 来源: 题型:
【题目】如图,8×8的正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的顶点都在正方形网格的格点上.将△ABC经过一次平移后得到△A′B′C′,点B′是点B的对应点.
(1)△ABC的面积是 ;
(2)画出平移后得到的△A′B′C′;
(3)画出△ABC的高线CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠BAC=90°,AB=AC=12cm,点 D 为△ABC 内一点,∠BAD=15°,AD= 4 cm,连接 BD,将△ABD 绕点 A 按逆时针方向旋转,使 AB 与 AC 重合,点 D 的对应点点 E,连接 DE,DE 交 AC 于点 F,则 CF 的长为__________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”
译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”
设每只雀重x斤,每只燕重y斤,可列方程组为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列网格图中,每个小正方形的边长均为个单位长度.已知在网格图中的位置如图所示.
(1)请在网格图中画出向右平移单位后的图形,并直接写出平移过程中线段扫过的面积;
(2)请在网格图中画出以为对称中心的图形.(保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,下列说法错误的是( )
A.点A与点B的距离是线段AB的长B.点A到直线CD的距离是线段AD的长
C.线段CD是△ABC边AB上的高D.线段AC是△BCD边BD上的高
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取次,数据如下(单位:分).
甲 | ||||||||
乙 |
(1)请你计算这两组数据的平均数、中位数.
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.
(1)如果AC=6cm,BC=8cm,试求△ACD的周长;
(2)如果∠CAD:∠BAD=1:2,求∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC在平面直角坐标系中的位置如图所示:
(1)画出△ABC绕点A按逆时针方向旋转90°后的△A′B′C′;
(2)在(1)的条件下,求点C旋转到点C′所经过的路线长及线段AC旋转到新位置时所划过区域的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com