精英家教网 > 初中数学 > 题目详情
如图所示,AD是△ABC的高,AE是⊙O的直径,A,B,C三点都在圆上,∠DAC=30°,则∠BAE为(  )
分析:首先连接BE,由AE是⊙O的直径,AD是△ABC的高,易求得∠BAE=∠DAC.
解答:解:连接BE,
∵AE是⊙O的直径,
∴∠ABE=90°,
∴∠BAE=90°-∠E,
∵AD是△ABC的高,
∴∠ADC=90°,
∴∠DAC=90°-∠C,
∵∠E=∠C,
∴∠BAE=∠DAC=30°.
故选B.
点评:此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AD是△ABC中BC边上的中线,已知△ABC的面积为12,则△ACD的面积等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

55、如图所示,AD是∠BAC的平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,且BD=CD.
求证:BE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明理由.

查看答案和解析>>

同步练习册答案